

Gathering and applying climate information for decision-making

Climate Change Impacts on Coastal Transport Infrastructure in the Caribbean: Enhancing the Adaptive Capacity of SIDS

6 December, 2017

United Nations Conference on Trade and Development

Regional Workshop - Barbados

Cassandra Bhat ICF

Objectives

- Learn the fundamentals about climate scenarios, models, and data
- Understand sources of climate data for the Caribbean

Key Message

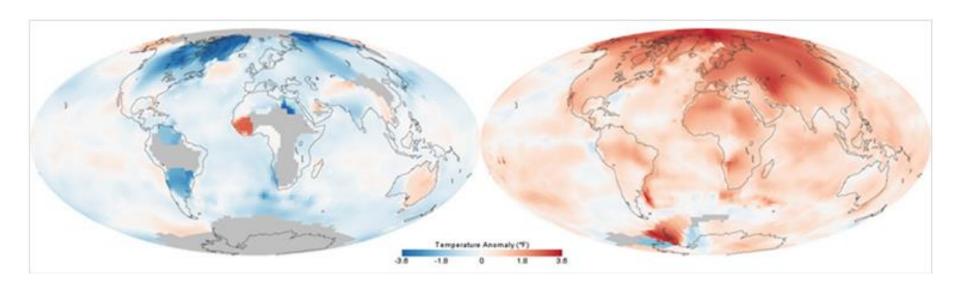
Lots of data and resources available!

Source: ICF

Topic 1

Overview of Climate Scenarios, Models, and Information

Key Concepts Help us Understand Climate Change Risks and Impacts


Connecting climate information with decisions requires a special vocabulary

Climate

The average of weather over at least a 30-year period. Note that the climate taken over different periods of time (30 years, 1000 years) may be different.

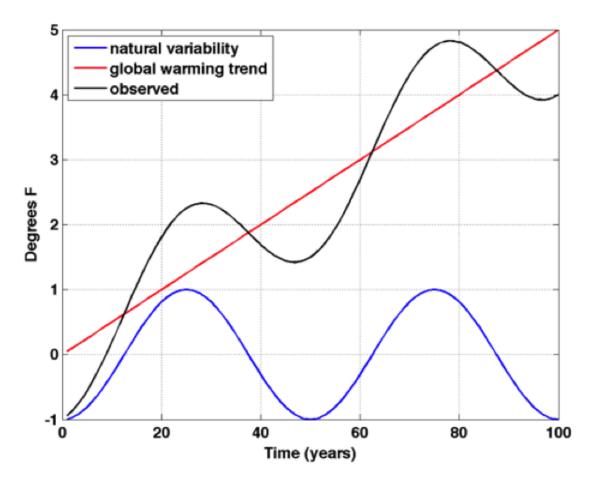
Climate is what we expect and weather is what we get.1

Extreme Events

Weather or climate conditions near the upper or lower ends of the range of observed values

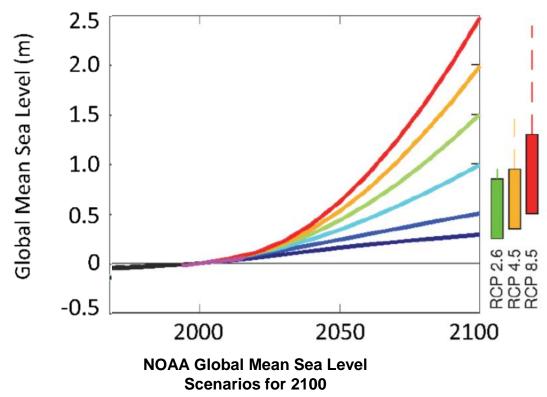
 Sometimes impacts on society and ecosystems become severe when climate conditions pass certain levels, called thresholds.

Extreme Temperatures



Extreme Rainfall and Flooding

Climate Change


A non-random change in climate that is measured over several decades or longer.

Climate Change Effects

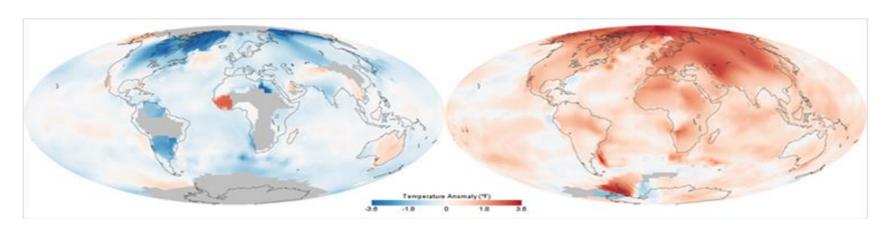
- Changes in the timing, amount, or intensity of precipitation
- Changes in heat waves, periods of freezing, maximum daily temperature

Characteristics of Climate Information

Stressor/Hazard:

- Temperature
- Precipitation
- Sea level rise
- Storm surge
- Drought
- Etc.

Variable:


- Tmax
- Tmin
- Tavg
- 24-hour rainfall
- Wind speed
- Humidity
- Etc.

Time period:

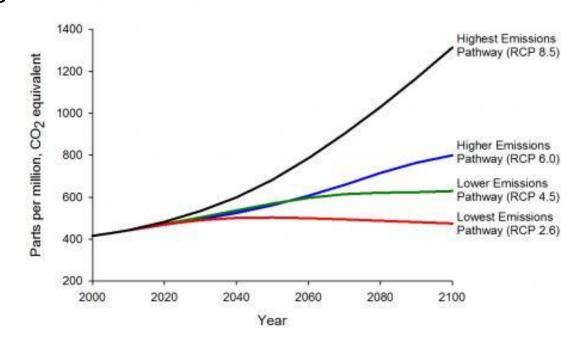
- Historical
- Forecast
- Projected

Temporal resolution:

- Daily
- Monthly
- Seasonal
- Annual
- Decadal

Dimensions of Climate Projections


- Emission scenarios
- Climate models
- Spatial resolution



Emission Scenarios

Scenario = a possible future Numerous alternatives of how the future can unfold

Ranges from high emission to low emission

GHG concentrations → average temperature increase → SLR → other effects

Representative Concentration Pathways (RCPs)

Scenario Name	Description	Concentrations (ppm CO₂ equiv.)	Change in CO ₂ e compare	Global Surface Temp. Change	
		by 2100	2050	2100	by 2100*
RCP 2.6	Emissions reduced substantially from current pathway.	430-480	-72 to -41%	-118 to -78%	0.5–3.0 °F (0.3–1.7 °C)
RCP 4.5	Emissions reduced sufficiently so that total radiative forcing is stabilized by 2100.	580-720	-38 to 24%	-134 to -21%	2.0–4.7 °F (1.1–2.6 °C)
RCP 6.0	Emissions reduced sufficiently so that total radiative forcing is stabilized by 2100.	720-1,000	18 to 54%	-7% to 72%	2.5–5.6 °F (1.4–3.1 °C)
RCP 8.5	High emissions continue through 2100. Most representative RCP of current emissions track.	>1,000	52 to 95%	74 to 178%	4.7–8.6 °F (2.6–4.8 °C)

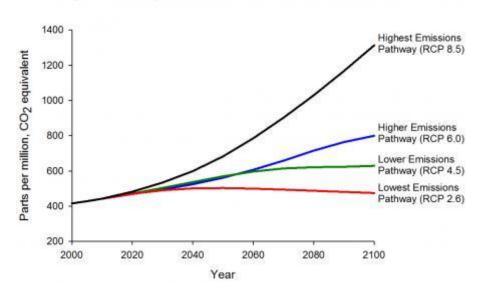
Emission Scenarios

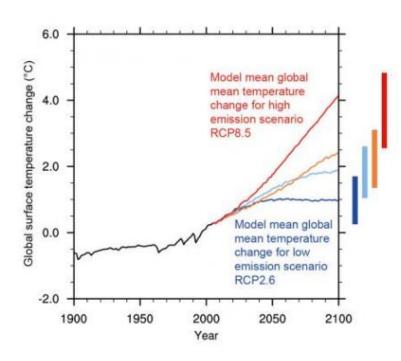
IPCC Fourth Assessment Report

Scen ario Nam e	Description	Global Surface Temp. Change by 2100	
B1	Low emissions.	0.54-1.62 °F (0.3-0.9 °C)	0.59-1.25 ft (0.18-0.38 m)
A1B	Medium-High emissions.	3.06-7.92 °F (1.7-4.4 °C)	0.69-1.57 ft (0.21-0.48 m)
A2	Medium-High emissions.	3.6-9.72 °F (2.0-5.4 °C)	0.75-1.67 ft (0.23-0.51 m)

UN IPCC Working Group I: The Scientific Basis (http://www.ipcc.ch/ipccreports/tar/wg1/029.htm)

IPCC Fifth Assessment Report


Scenari o Name	Description	CO ₂ equiv. ppm by 2100	Global Surface Temp. Change by 2100	Global Mean Sea Level Rise by 2100	
RCP2.6	Substantial and sustained emissions reductions	475	0.5-3.0 °F (0.3-1.7 °C)	0.85-1.8 ft (0.26- 0.55m)	
RCP4.5	Stabilization	630	2.0-4.7 °F (1.1-2.6 °C)	1.0-2.1 ft (0.32- 0.63m)	
RCP6.0	Stabilization	800	2.5-5.6 °F (1.4-3.1 °C)	1.1-2.1 ft (0.33- 0.63m)	
RCP8.5	High emissions continue	1313	4.7-8.6 °F (2.6-4.8 °C)	1.5-2.7 ft (0.45- 0.82m)	

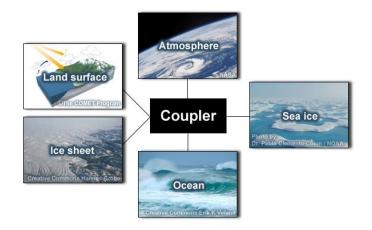

Source: UN IPCC, Climate Change 2013: The Physical Science Basis (https://www.ipcc.ch/report/ar5/wg1/)

RCPs

Projected Atmospheric Greenhouse Gas Concentrations

Uncertainties in Emission Scenarios

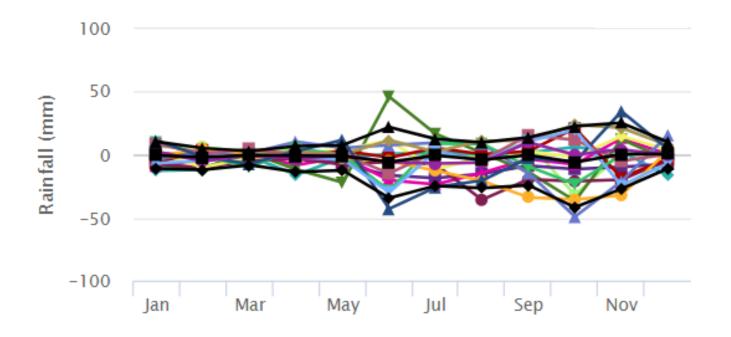
Uncertainties about the future


- Socio-economic development
- Technology
- Energy use
- Policies for GHG mitigation

These uncertainties increase as they are projected further out in the future

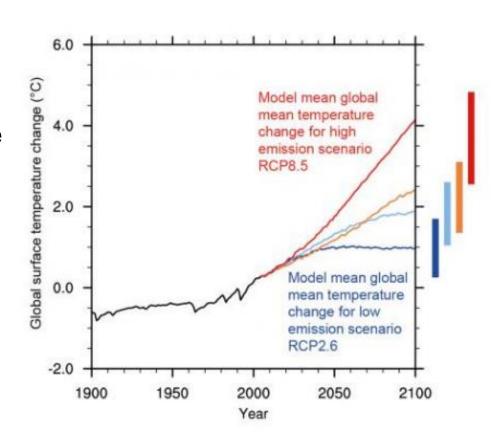
Climate Models

- Mathematical representations of climate system and interacting processes
- Can reproduce key features found in the climate of the past century
- Run emission scenarios and produce projections
- Can be done on different timescales and different geographic areas
- Global climate models referred to as "GCMs"



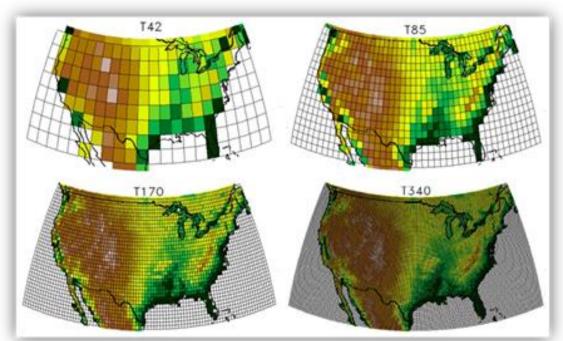
Model components (UCAR)

Climate Models


- Many models exist
- Different models produce different results
- Model agreement is not necessarily an indication of likelihood

Climate Projections

- Simulation of possible climate future in terms of temperature, precipitation, and other climate variables
- Each projection = combination of model, scenario, and initial condition



Downscaling

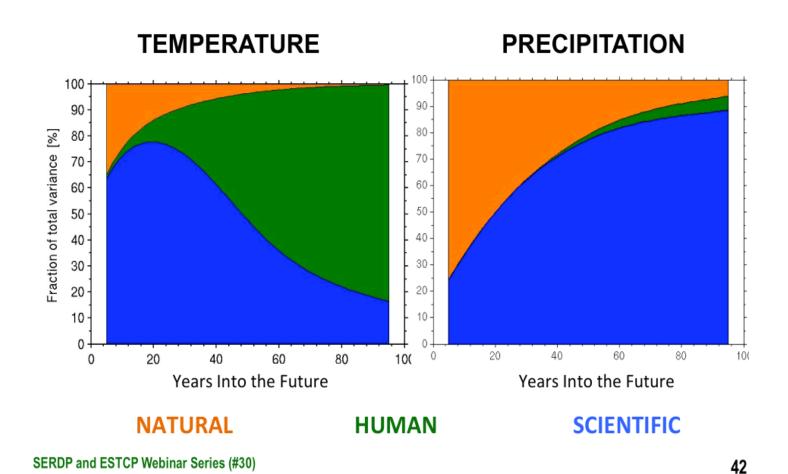
- Global climate models (GCM) spatial resolution ranges from about 50 to 300 km
- Resolution may be too coarse for regional decision-making
- Downscaling = take information known at large scales to make predictions at local scales

Types of Downscaling

- Statistical applies the statistical relationship between local weather variables (e.g., surface rainfall) and larger-scale climate variables (e.g., atmospheric pressure) to adjust GCM outputs to the local scale
- Dynamical uses GCM outputs to feed a higher-resolution regional climate model (RCM)

Dynamically downscaled data available for the Caribbean at 25 km and 50 km resolution

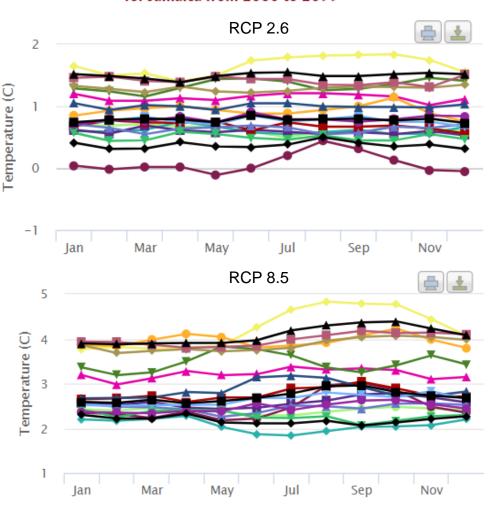
Uncertainties in Models


"All models are wrong, but some are useful."

Sources of uncertainty:

- Natural uncertainty climate variability resulting from natural processes in the climate system
- Human uncertainty Future emissions of greenhouse gases resulting from human activity (this becomes a larger component of uncertainty on time scales of 50 years or more)
- Scientific uncertainty an incomplete understanding of and ability for computer systems to model Earth's complex processes (clouds, particles, ice, natural variability, etc.)

Uncertainty Varies over Time and by Stressor



Working with Uncertainty

- Despite uncertainties, model information can be useful to decision making
- Use an ensemble of model simulations produced from a range of climate models driven by different future scenarios and timescales
- Consider the spread of the models within an ensemble (10th percentile, median, 90th percentile)

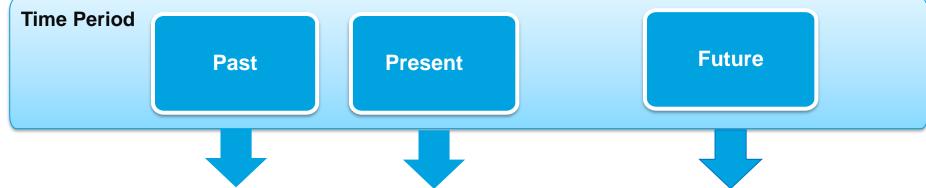
Projected change in Temperature for Jamaica from 2080 to 2099

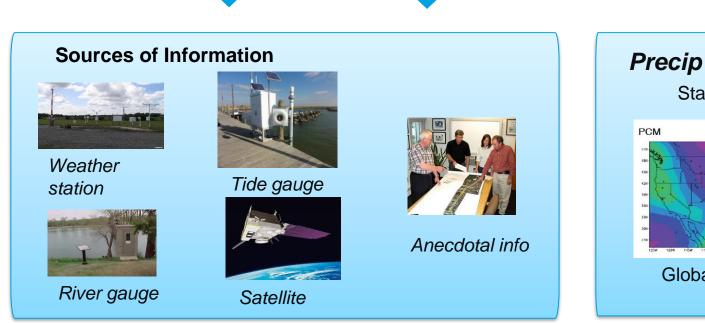
Topic 2

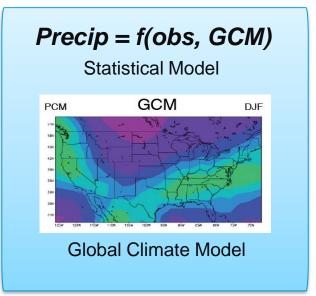
Caribbean climate data sources

Levels of Climate Information

General climate information


The trend in recent and future climate (e.g., is the climate getting hotter or cooler? Wetter or drier?)


Information on the magnitude and frequency of events

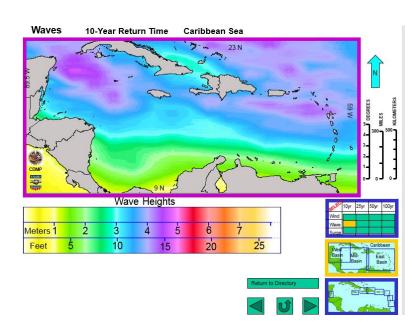

Detailed climate data that can be used as an input into specific -technical analysis

Types of Climate Information and Sources

- Temperature, precipitation, and wind
 - Met Service
 - UNDP Climate Change Country Profiles

- Temperature, precipitation, and wind
 - Met Service
 - UNDP Climate Change Country Profiles
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level

Temperature, precipitation, and wind


- Met Service
- UNDP Climate Change Country Profiles

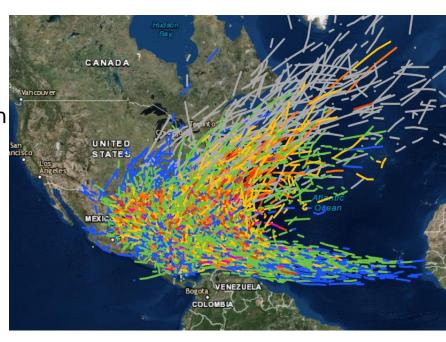
Sea Level/Tides

- Met Service
- Permanent Service for Mean Sea Level

Hurricanes

 Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods

Temperature, precipitation, and wind


- Met Service
- UNDP Climate Change Country Profiles

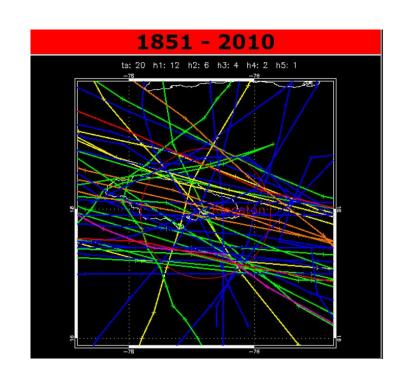
Sea Level/Tides

- Met Service
- Permanent Service for Mean Sea Level

Hurricanes

- Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods
- NOAA National Hurricane Center <u>Historical</u> <u>Hurricane Tracks</u>

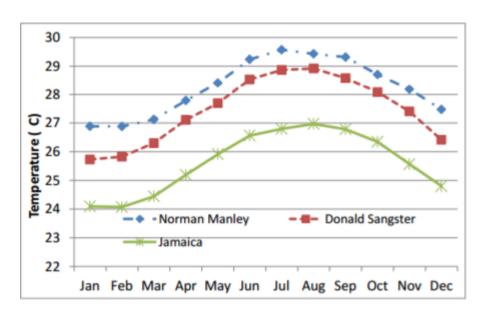
Temperature, precipitation, and wind


- Met Service
- UNDP Climate Change Country Profiles

Sea Level/Tides

- Met Service
- Permanent Service for Mean Sea Level

Hurricanes


- Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods
- NOAA National Hurricane Center <u>Historical</u> Hurricane Tracks
- Caribbean Hurricane Network

Temperature, precipitation, and wind

 National studies (e.g., State of Jamaican Climate Report)

- Temperature, precipitation, and wind
 - National studies (e.g., State of Jamaican Climate Report)
 - UWI Climate Studies Group

Temperature, precipitation, and wind

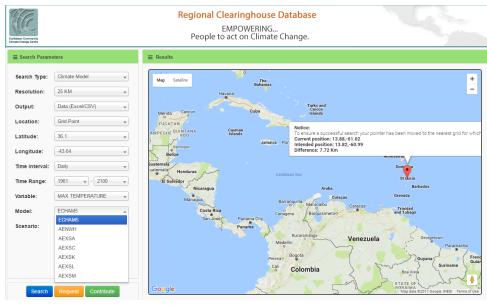
- National studies (e.g., State of Jamaican Climate Report)
- UWI Climate Studies Group
- CARIBSAVE Climate Change Risk Atlas


Table 3.3.1: Observed and GCM Projected Changes in Precipitation for Saint Lucia.

Saint Lucia: Country Scale Changes in Precipitation													
	Observed Mean			Projected changes by the 2020s		•	Projected changes by the 2050s		Projected changes by the 2080s				
	1970-99	1960- 2006		Min	Mediar	Max	Min	Mediar	Max	Min	Median	Max	
	(mm per	(change in		Change in mm per month		Change in mm per		Change in mm per					
	month)	mm pe						month			month		
			A2	-15	-2	4	-19	-4	4	-37	-16	6	
Annual	179.2	0.1	A1B	-10	-2	9	-18	-6	6	-29	-8	5	
			B1	-11	-3	13	-18	-2	3	-21	-4	7	
			A2	-3	0	11	-8	-1	1	-10	-4	3	
DJF	125.6	1.9	A1B	- 6	0	4	-8	-1	6	-12	-3	3	
			B1	-7	-1	14	-9	-1	7	-8	0	6	
			A2	-15	0	8	-20	0	17	-27	-1	9	
MAM	105.3	-0.9	A1B	-8	1	8	-20	-1	8	-26	0	8	
			B1	-10	0	10	-16	0	2	-17	0	5	
			A2	-32	-7	10	-36	-18	12	-72	-27	14	
JJA	219.3	-6.7	A1B	-25	-7	6	-34	-19	14	-45	-19	4	
			B1	-26	-10	31	-36	-12	5	-40	-15	21	
			A2	-29	-4	17	-40	-4	8	-57	-12	8	
SON	265.4	5.7	A1B	-30	-2	23	-35	-7	21	-59	-11	15	
			B1	-24	-2	12	-39	-1	16	-45	-6	9	

Temperature, precipitation, and wind

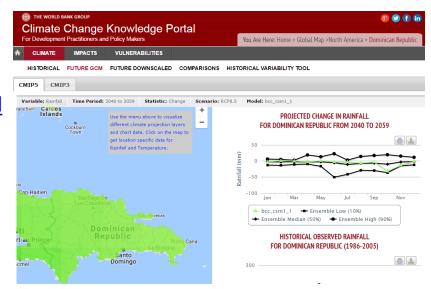
- National studies (e.g., State of Jamaican Climate Report)
- UWI Climate Studies Group
- CARIBSAVE Climate Change Risk Atlas
- Inter-American Development Bank (IDB)
 Climate Change Projections in Latin America
 and the Caribbean: Review of Existing Regional
 Climate Models' Outputs



- Temperature, precipitation, and wind
 - National studies (e.g., State of Jamaican Climate Report)
 - UWI Climate Studies Group
 - CARIBSAVE Climate Change Risk Atlas
 - Inter-American Development Bank (IDB)
 Climate Change Projections in Latin America
 and the Caribbean: Review of Existing Regional

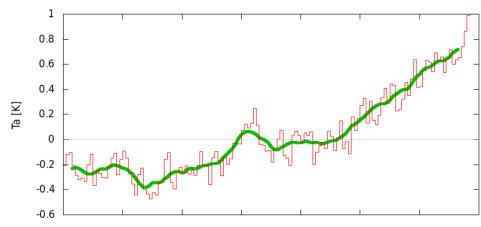
Climate Models' Outputs

 Caribbean Community Climate Centre (CCCCC) Database


Temperature, precipitation, and wind

- National studies (e.g., State of Jamaican Climate Report)
- UWI Climate Studies Group
- CARIBSAVE Climate Change Risk Atlas
- Inter-American Development Bank (IDB)
 Climate Change Projections in Latin America
 and the Caribbean: Review of Existing Regional
 Climate Models' Outputs
- Caribbean Community Climate Centre (CCCC) Database
- Weather Generator

Temperature, precipitation, and wind

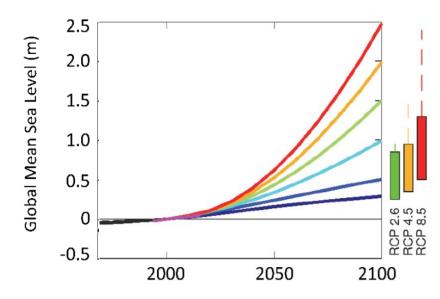

- National studies (e.g., State of Jamaican Climate Report)
- UWI Climate Studies Group
- CARIBSAVE Climate Change Risk Atlas
- Inter-American Development Bank (IDB)
 Climate Change Projections in Latin America
 and the Caribbean: Review of Existing Regional
 Climate Models' Outputs
- Caribbean Community Climate Centre (CCCCC) Database
- Weather Generator
- World Bank Climate Change Knowledge Portal (CCKP)

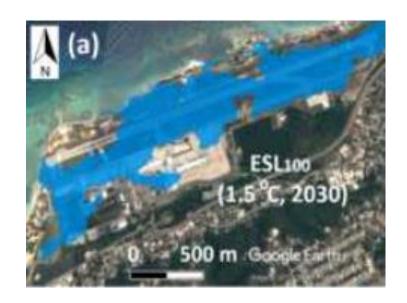
Temperature, precipitation, and wind

- National studies (e.g., State of Jamaican Climate Report)
- UWI Climate Studies Group
- CARIBSAVE Climate Change Risk Atlas
- Inter-American Development Bank (IDB)
 Climate Change Projections in Latin America
 and the Caribbean: Review of Existing Regional
 Climate Models' Outputs
- Caribbean Community Climate Centre (CCCC) Database
- Weather Generator
- World Bank Climate Change Knowledge (CCKP)
- KNMI Climate Explorer

Sea Level/Tides

 NOAA 2017, Technical Report on Global and Regional Sea Level Rise Scenarios for the United States (scenarios)

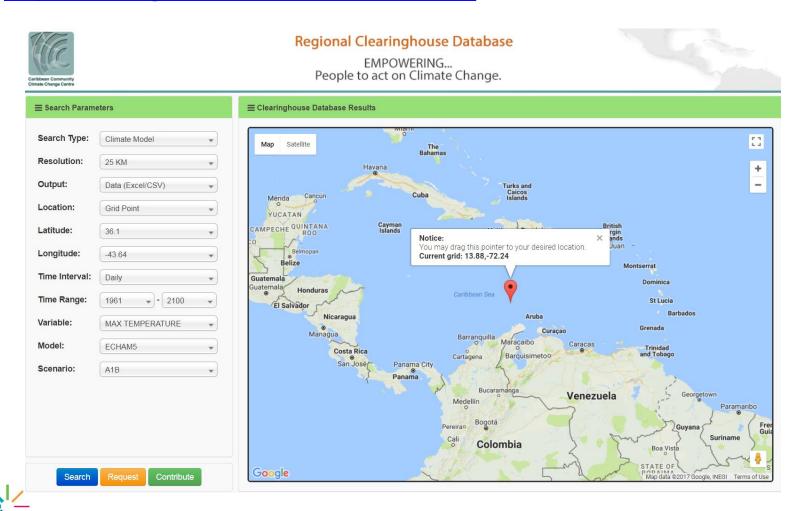



Table 4. Probability of exceeding GMSL (median value) scenarios in 2100 based upon Kopp et al. (2014).

GMSL rise Scenario	RCP2.6	RCP4.5	RCP8.5
Low (0.3 m)	94%	98%	100%
Intermediate-Low (0.5 m)	49%	73%	96%
Intermediate (1.0 m)	2%	3%	17%
Intermediate-High (1.5 m)	0.4%	0.5%	1.3%
High (2.0 m)	0.1%	0.1%	0.3%
Extreme (2.5 m)	0.05%	0.05%	0.1%

Sea Level/Tides

- NOAA 2017, Technical Report on Global and Regional Sea Level Rise Scenarios for the United States (scenarios)
- Large scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) (localized spatial modeling)


Sea Level/Tides

- NOAA 2017, Technical Report on Global and Regional Sea Level Rise Scenarios for the United States (scenarios)
- Large scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) (localized spatial modeling)
- SMASH (from 5Cs)

5Cs Regonal Climate Clearinghouse

http://clearinghouse.caribbeanclimate.bz/

Build relationships and trust with information providers

- Build relationships with partner(s) who are well-equipped to collect and analyze climate data
 - Universities, 5Cs, Met Office, consulting firms
- Work together to identify and overcome data gaps, refine data needs
- As you become familiar with the climate information it becomes more useful, and your needs more apparent. This may involve some capacity building and active partnerships.

Summary: Best practices in identifying information

- Consider how climate has impacted the system in the past, recognizing that it is not a direct parallel
- Account for climate variability, both natural and human-caused, and potential climate extremes.
- Recognize uncertainty in future outcomes and consider a full range of climate scenarios.
- Ask for help from partners and experts if you cannot find or understand the information you need.

More Details in Report

Name	URL	Variables	Time Period	Temporal Resolution	Models	Scenario(s)	Spatial Resolution
Caribbean Community Climate Change Centre (CCCCC) Regional Clearinghouse – RCM	http://clearinghous e.caribbeanclimat e.bz/?db_type=Cli mate%20Model&c ountry=&collection =V501&s=§or =&topic=	Available soil moisture content in root zone, convective rainfall rate, evaporation rate from canopy, large scale rainfall rate, max temperature, minimum temperature, humidity, etc.	1961- 2100	Daily	ECHAM5	A1B	25 km
CCCCC Regional Clearinghouse – GCM	http://clearinghous e.caribbeanclimat e.bz/?db_type=Cli mate%20Model&c ountry=&collection =V501&s=§or =&topic=	Change in annual mean temperature, Change in total precipitation rate (mm/day), Change in mean surface temperature, Change in relative humidity, Change in wind speed at 10 m (m/s)	1990- 2100 (ECHA M), 2010- 2069 (Had)	Daily	ECHAM4, HadAM3P	A2, B2	50 km
CARIBSAVE Climate Change Risk Atlas	http://www.caribbe anclimate.bz/close d-projects/2009- 2011-the- caribsave-climate- change-risk-atlas- cccra.html	Mean temperature, total precipitation, wind speed, relative humidity, sunshine hours, sea surface temperatures, frequency of hot days, frequency of cold days, frequency of cold nights, per centage of rainfall falling in heavy events, maximum 1-day rainfall, maximum 5-day rainfall	2020s, 2050s, 2080s (rel. to 1970- 1999)	Seasonal and Annual	Ensemble of 15 General Circulation Models (GCMs) and PRECIS Regional Climate Model (RCM) driven by ECHAM4 and HadCM3	GCMs: A2, A1B, B1 RCM: A2	GCMs: 2.5 degrees RCM: unknown

Thank you! Questions?

