UNCTAD National Workshop Saint Lucia 24 – 26 May 2017, Rodney Bay, Saint Lucia

"Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS"

Climate Risk and Vulnerability Assessment Framework for Caribbean Coastal Transport Infrastructure

By

Cassandra Bhat

ICF, United States

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.

Agenda

Understanding and Addressing Coastal Transport Infrastructure Climate Change Vulnerability in Caribbean SIDS

- Why is it important?
- Framework overview
- Key steps

Coastal Transport Infrastructure Is Highly Sensitive to Climate Variability and Change

Climate change and extreme weather affect transport infrastructure

Historical climate events show the costs to and implications for transport services

 In 2015, Tropical Storm Ericka triggered flash flooding, slope failure, and debris generation in the Commonwealth of Dominica:

Economic Impacts
 Roads and Bridges Damages: US\$288 million Airports Damages: US\$15 million Airport/Seaport Transport Sector Damages and Losses: US\$977,654 Airport Operations Losses: US\$14.5 million to airlines and US\$80,000 to airports Airport shutdown impacted the tourism industry

Key Principles

#1: Keep the end goal in mind

The purpose of assessing vulnerability is to improve decision-making with respect to climate variability and change. If possible, identify specific decisions to inform.

#2: Work within data limitations

Data limitations—be they gaps in data on current assets, historical weather, future climate, or others—need not curtail adaptation efforts.

#3: Engage stakeholders

Stakeholder engagement is central to an effective climate change vulnerability assessment process and has multiple benefits, including:

- Help fill data gaps
- Build support for adaptation efforts
- Build capacity

1.4 Identify Stakeholders

- Port and airport managers
- Port and airport authorities (e.g., Maritime Authority, Airport Authority)
- Private sector operators (e.g., ship owners, airline representatives)
- Asset owners and operators of interdependent infrastructure (e.g., energy, water)
- Government agencies overseeing transport, environment, natural development, and disaster preparedness
- Meteorological service
- Local or regional universities
- International or other organizations who have done related work

Benefits of engaging stakeholders include:

- Help fill data gaps
- Build support for adaptation efforts
- Build capacity to address risks

Tips for Engaging Stakeholders

Set Context and Scope

- Establish regular
- communication protocols
- Establish clear requests
 for stakeholders

Choosing Between Vulnerability Assessment Methods

	Advantages	Disadvantages			
Qualitative	 Easily understandable Useful for prioritizing action Relatively low cost to prepare 	 Does not communicate complex or less obvious aspects of vulnerability well May be open to interpretation and therefore contain uncertainties Does not directly imply the nature of adaptations 			
Quantitative	 Helpful for informing cost-benefit analyses of adaptation options Takes advantage of available data Can communicate complex or less obvious aspects of vulnerability 	 Can be time and resource intensive Can be long, technical, hard to follow and thus not used effectively if sufficient outreach is not conducted May not have all desired data 			

6/9/2017 29

To build the economic case for adaptation
To design adaptation strategies

To inform infrastructure investment decisions

Identifying Thre	sholds: Aircraft Runw	ay Length R	equirements	and Temper	ature
Identify the type of airco For major aircraft categ	cturers set minimum rur raft that use the airport of gories, find airport specifi elevation of your airport re.	or might use it ications on th	t in the future. e manufacture	er's website.	
• •	unway Length Require	ements by Te	emperature a	nd Aircraft ¹	
	Moon movimur	n dailv temp	erature of the	e warmest m	onth
	Mean maximu				ionun
Boeing:	Standard Day: 15°C	30°C	37.2°C	40°C	50°C
Boeing: 737-600			37.2°C 3,048 m		
v	Standard Day: 15°C	30°C		40°C	50°C

higher-high water levels

¹Boeing (2013). 737 Airplane Characteristics for Airport Planning, Boeing Commercial Airplanes. D6-58325-6, September 2013. Available at: http://www.boeing.com/assets/pdf/commercial/airports/acaps/737.pdf

3.3 Assess Future Exposure

Determine which locations might be affected by sea level rise:

Option 3

Qualitative Assessment

Estimate potential flood risk areas using **best available information** and **professional judgment**.

For example, meet with stakeholders to identify low-lying areas and places that historically flood during high tide events.

Photo credit: Cassandra Bhat, ICF

Avatiu Port, Rarotonga, Cook Islands							
CLIMATE EVENT	EXISTING RISK ^{*1} Consequence (Impact) Likelihood Risk		YOUR UNDERSTANDING OF FUTURE CLIMATE RISK Consequence (Impact) Likelihood				
	(impacty	Lincinoou	TUSK	Higher Lower No Change	More Less No Change	Comments	
High Wind (e.g crane safety, navigability)	Moderate	Likely	High	Higher	More	Tug boat most vulnerable. High wind - just shut down services/stay in port.	
High Rainfall (e.g flash flooding in surrounding districts or site drainage issues)	Minor	Possible	Medium	Same	More		
High Waves (e.g navigability, sea supply chain, breakwaters etc.)	Moderate	Likely	High	Higher	More		
Temperature	Minor	Almost Certain	High	Higher	More		
Sea Level Rise	Moderate	Almost Certain	Very High	Higher	More		
Tropical Cyclone (e.g. combination of high winds, waves and storm surge)	Possible	Extreme	Very High	Higher	More	Tears of cyclones. Lines boat and crane can be done within a day if conditions are ok. Tug can be brought in later if a bigger boat required. Once tug back in water takes about 4 hours to ballast the tug. NB in regards to 2005 cyclone- opened straight away and mess had to be cleaned up. Roofing was an issue that needed to be cleaned up and nocks removed. 1987 cyclone- was like a 100 year cyclone, wijned everything on seaward part of wharf pushed into the harbour (none of it had been removed). Previous failings - all cargo needs to be taken off-like.	

What is Adaptation?

Adaptation:

Process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities (IPCC)

Adaptation enhances resilience:

Capability to anticipate, prepare for, respond to, and recover from significant stressors with minimum damage

After a major flood, a pumping station in Santo Domingo was raised by the height of a person to avoid future impacts. (Source: ICF)

Consider a range of adaptation options - one measure will rarely do it all

Example: Using climate information in adaptive management

<u>Adaptation strategy</u>: Incorporate climate change data and trends into an airport's master plan. Integrating climate change at a high-level will influence other sectors of the airport as trends are realized.

- We are planning to build a new runway to accommodate higher expected traffic. How long should the runway be? What elevation should it be? How much drainage capacity is needed?
- Should we update our annual emergency management exercises so that our worst-case scenario for storm surge accounts for recent and expected sea level rise?
- Should I change anything about how I maintain my pavement or other infrastructure?
- Will climate change affect any of the projects in our strategic or master plan?
- Do we need back-up or redundant transportation modes?
- Will climate change affect expected demand for tourism to the island?
- Do I need to create other coastal protections?