UNCTAD National Workshop Saint Lucia

24 - 26 May 2017, Rodney Bay, Saint Lucia

"Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS"

Training

Identifying operational thresholds for vulnerability assessment

By

Cassandra Bhat

ICF, United States

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received.

The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.

Reference Handout

Objectives

Breakout objectives:

 Participants will identify sensitivity thresholds for the purpose of assessing and reducing climate vulnerabilities (and know how to continue the process as needed)

Context for how thresholds may be used in climate assessment:

- Identify specific climate variables or hazards of interest, to determine how frequently thresholds may be exceeded over time, given climate change projections
- Determine "risk tolerance" in light of projections
- Identify priorities for adaptation investments
- Identify any research needs (e.g., if local projections are not available for key thresholds)
- Document and share critical institutional knowledge
- Inform monitoring and evaluation over time

Breakout Instructions

Using the accompanying handout:

- 1. Identify at least three components of concern for your facility (see definitions below)
- 2. For each component, determine applicable hazards
- 3. For each component/hazard combination, identify **thresholds/increments**.
- 4. Assign a spokesperson to report your findings to the larger group

Example 1: Container cranes are affected by wind speeds above 25 m/s

Component Hazard		Threshold/ Increment	Impacts	
		Max sustained winds	Crane operations and damage	
Container Cranes	High winds	25 m/s	Crane operations suspended	
		40 m/s	Cranes break free of tie downs	
		55 m/s	Cranes blow over	

Example 2: If water elevations rise 1 foot above current high tides, waters would reach

Component	Hazard	Threshold/ Increment	Impacts
Docks	Tidal flooding	Water levels above current MHHW	Flooding and disruptions
		1 foot	Water reaches dock edge, increased risk of overtopping, minor damage to ships
		2 feet	Water overtops dock, operations limited
		3 feet	Water overtops dock, potential damage
			to ships

Definitions

• **Component** – The specific place, asset, or other facility component that may be of concern.

Port components may include:

- Docks
- Navigation channel
- Cranes
- Utilities
- Generators
- Buildings and warehouses
- Drainage system
- Access roads
- Personnel

Airport components may include:

- Runways, taxiways, and aprons
- Terminals and other buildings
- Air traffic control
- Communication systems
- Access roads and parking lot
- Utilities
- Personnel
- Navigational aids
- Weather instrumentation
- Drainage system
- **Hazard** The climate hazard drivers that may cause damage or interruption

Climate hazards:

- Tidal flooding
- Storm surge
- Waves
- Heavy rainfall
- Wind
- Heat
- Impact What specific impact(s) are you concerned about that result from the hazard driver (e.g., generator gets flooded and stops operating, residents evacuate, road becomes impassible, crane is inoperable).
- Threshold increment The level(s) at which various impacts occur. This is a specific measurement (e.g., wind speed, water level, rain/hour).

Example:

Tidal flooding: 1, 2, or 3 feet above current mean higher-high water (MHHW)

Wind: 25 m/s, 30 m/s, 35 m/s

Storm surge inundation 1, 5, or 10 times per year

Example Thresholds

Example thresholds and their impacts from a variety of vulnerability assessments and literature source.

Hazard	Component	Impact	Example Threshold	Source
Ports			· ·	
Extreme Heat	Operations	Energy costs	1°C warming = 5% increase in energy costs (in one illustrative terminal)	IDB, 2015
	Paved surfaces	Asphalt pavement softening	Depends on asphalt pavement grade	U.S. DOT, 2014
Heavy Rain	Cranes	Low visibility inhibits crane operation	In Manzanillo, intense rainfall > 20 mm within 24 hours reduces visibility enough to impair operations	IDB, 2015
	Goods handling	Inability to handle water-sensitive goods	Precipitation > 1 mm within 24 hours	IDB, 2015
Flooding	Operations	Flooding in some locations of the port could impair operations.	Conditions that cause flooding will vary by facility.	
Tidal Flooding	Docks	Flooding	Dock elevation/quay height	IDB, 2015
Wind Speeds	Cranes	Ability to operate	Varies by crane type. For example, 25 m/s (56 mph, 48.6 knots) for a CONTECON SSA	IDB, 2015
	Navigational channel	Ability to berth ships (due to waves)	Varies by facility. For example, at Kingston Container Terminals (KCT) in Jamaica: • Winds ≥ 18 m/s (40.3 mph, 35 knots) force operational shutdown • With winds of 12.8-18 m/s (28.8-40.3 mph, 25-35 knots), discretion is applied At Falmouth Cruise Terminal: • Winds > 12.8 m/s (28.8 mph, 25 knots) create unmanageable docking trajectories	Smith Warner, 2017
Airports				
Extreme Heat	Runways	Ability of aircraft to take off	Runway length requirement varies based on plane type, weight, and runway length. Rule of thumb: Runway length requirements increase by 1% for every 1°C by which the mean daily maximum temperature of the hottest month exceeds 15°C (assuming runway is at sea level) (ICAO, 2006)	
	Flight operations	Aircraft maximum take-off operational temperature	47.7°C (118°F)	ACRP, 2016
	Personnel	Reduced employee ability to work safely outdoors (need for more breaks)	Heat Index* over 39.4°C (103°F) is "high" risk Heat Index* over 46°C (115°F) is "very high" risk	ACRP, 2016
Heavy rain	Flight operations	May decrease runway friction to aircraft cannot take off	Varies by airport	ICAO, 2002, Chapters 6-7

Hazard	Component	Impact	Example Threshold	Source
Flooding	Flight	Inability of aircraft to	Any flooding on the runway can impair	ICAO,
	operations	land or take off	operations. Conditions that cause flooding will	2002,
			vary by airport.	Chapter 2
Sea Level	Flight	Flooding on the	Runway elevation	U.S. DOT,
Rise	operations	runway	-	2014
Wind	Flight	Inability of aircraft to	Commercial airports: sustained winds of 20 m/s	ACRP
Speeds	operations	land or take off	(45 mph, 39 knots) or frequent gusts of 26 m/s	Report 160
			(58 mph, 50.4 knots)	
			General Aviation airports: 11.2 m/s (25 mph,	
			21.7 knots)	

^{*}Heat Index is a function of temperature and relative humidity. See http://www.nws.noaa.gov/om/heat/heat_index.shtml. For a relative humidity of 70%, Heat Index would exceed 39.4°C (103°F) at 32.2°C (90°F) and would exceed 46°C (115°F) at 34°C (94°F).

Sources:

- ACRP (2016). Addressing Significant Weather Impacts on Airports. ACRP 02-49. Airport Cooperative Research Program Description available at: http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=3695
- ICAO (2002). Airport Services Manual, Part 2: Pavement Surface Conditions. Fourth Edition. International Civil Aviation Organization (ICAO). Available at:

 <a href="https://www.bazl.admin.ch/bazl/fr/home/experts/reglementation-et-informations-de-base/bases-legales-et-directives/annexes-a-la-convention-de-l-organisation-internationale-de-l-organisation-internation-internation-internation-internation-internation-internation-internation-internation-internation-internation-internation-internation-internation-internation-int

av/manuels-associes-a-lannexe-14-de-l-oaci.html

- ICAO (2006). Aerodrome Design Manual, Part 1: Runways. Third Edition. International Civil Aviation Organization (ICAO). Available at:

 https://www.bazl.admin.ch/bazl/fr/home/experts/reglementation-et-informations-de-base/bases-legales-et-directives/annexes-a-la-convention-de-l-organisation-internationale-de-l-av/manuels-associes-a-lannexe-14-de-l-oaci.html
- IDB (2015). Port of Manzanillo: Climate Risk Management (Final Report). September, 2015. Available at: https://publications.iadb.org/handle/11319/7649 Smith Warner International Ltd (2017). Case Study Report Jamaica. Framework for Assessing the Climate Impact on Coastal Transportation Infrastructure in Small Island Developing States (SIDS).
- U.S. DOT (2014). Transportation Climate Change Sensitivity Matrix. United States Department of Transportation. June 2014. Available at:

 https://www.fhwa.dot.gov/environment/sustainability/resilience/ongoing and current researc
 h/gulf coast study/phase2 task2/sensitivity matrix/