

Identifying Operational Thresholds for Vulnerability Assessments

Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in the Caribbean

> 6 December, 2017

United Nations Conference on Trade and Development

Regional Workshop – Barbados

Cassandra Bhat, ICF

Austin Becker, URI

Gerald Bove, URI

Objectives

- Understand:
 - The purpose of operational thresholds
 - How to identify operational thresholds for your facility
 - How to use operational thresholds to assess vulnerabilities

Agenda

- Introduction
- Breakout Exercise: Identify Operational Thresholds
- Report-outs
- Discussion
- Conclusion

Introduction

Operational Thresholds

Operational Thresholds

What is an operational threshold?

Level of weather conditions at which a facility or piece of infrastructure experiences disruption, damage, or other impact.

Operational Thresholds

What is an operational threshold?

Level of weather conditions at which a facility or piece of infrastructure experiences disruption, damage, or other impact.

Who sets operational thresholds? Thresholds are inherent to the individual facility or component.

- Damage thresholds likely set within engineering or design specifications for the asset
- Operational disruption thresholds set by facility managers based on safety and other risk considerations

Purpose of Operational Thresholds

Within the methodology:

- Identify specific climate data of interest
- Develop practical estimates of risk over time
- Identify priorities and timeline for adaptation investments

→ At what point will these thresholds be exceeded in the future? How often will these thresholds be exceeded in the future? What is the potential cost or other impact of exceeding these thresholds?

Other Benefits

- Establish a means to share and document critical institutional knowledge
- Inform monitoring and evaluation over time
- Identify any research needs (e.g., if local projections are not available for key thresholds)

Purpose of Operational Thresholds

Time ------>

Thresholds Provide the Link Between Climate Models and Impacts

Can model:

- Heat days
- Storm surge
- Sea levels
- Precipitation rates (daily, monthly, annual)
- Wind speeds

Can't model (directly):

- Facility downtime
- Worker productivity
- Maintenance costs
- Infrastructure damage

Five Key Concepts

 Component – The specific place, asset, or operational activity that may be of concern

Ports: Docks, navigation channel, cranes, utilities, generators, buildings and warehouses, access roads, personnel, drainage system, ability of ships to dock, etc.

Airports: Runways, terminals, air traffic control, flight operations, utilities, access roads, etc.

Hazard – The climate hazard that may cause damage or interruption

Tidal flooding, storm surge, waves, heavy rainfall, wind, heat, etc.

- Variable The specific metric of that hazard (e.g., daily high temperature, 24hour precipitation)
- Threshold The specific measurement (e.g., wind speed, water level, rain/hour) at which the impacts occur. You may have multiple thresholds for any hazard and component, and which different types of impacts occur.
- Impact What specific impact(s) are you concerned about that result from the hazard (e.g., generator gets flooded and stops operating, residents evacuate, road becomes impassible, crane is inoperable).

Five Key Concepts

 Component – The specific place, asset, or operational activity that may be of concern

Ports: Docks, navigation channel, cranes, utilities, generators, buildings and warehouses, access roads, personnel, drainage system, ability of ships to dock, etc.

Airports: Runways, terminals, air traffic control, flight operations, utilities, access roads, etc.

Hazard – The climate hazard that may cause damage or interruption

Tidal flooding, storm surge, waves, heavy rainfall, wind, heat, etc.

- Variable The specific metric of that hazard (e.g., dail hour precipitation)
- Threshold The specific measurement (e.g., wire rain/hour) at which the impacts occur. You may have hazard and component, and which different types of
- Impact What specific impact(s) are you concerned hazard (e.g., generator gets flooded and stops opera road becomes impassible, crane is inoperable).

Tip: Use *increments* to determine thresholds.

For example, what would be the impacts of 0.5 m vs 1 m vs 3 m?

Example

Component	Hazard	Variable	Threshold / Increment	Impacts	
Container Cranes	High winds	Max sustained winds	25 m/s	Crane operations suspended	
			40 m/s	Cranes break free of tie downs	
			55 m/s	Cranes blow over	

Component	Hazard	Variable	Threshold / Increment	Impacts		
Docks	Tidal flooding	Water levels above current MHHW	1 foot	Water reaches dock edge, increased risk of overtopping, minor damage to ships		
			2 feet	Water overtops dock, operations limited		
			3 feet	Water overtops dock, potential damage to ships		

Determining Operational Thresholds

For each hazard and component/operation:

- 1. In which conditions is the facility unable to operate?
 - Does the facility have official operational manuals that specify thresholds?
 - In which conditions has it been unable to operate in the past?
- 2. In which conditions would the facility be damaged?
 - In which conditions has it been damaged in the past?
 - What conditions is it designed to withstand

Determining Operational Thresholds

For each hazard and component/operation:

- 1. In which conditions is the facility unable to operate?
 - Does the facility have official operational m
 - In which conditions has it been unable to o
- 2. In which conditions would the facility be
 - In which conditions has it been damaged in
 - What conditions is it designed to withstand

How to do this, in practice?

- Convene a workshop with facility staff
- Populate list of components, thresholds by component and hazards (start with defaults)

Breakout Group Activity

Breakout Groups

Breakout Group Instructions

Step 1 – Determine applicable hazards for your target component

Step 2 – For each component/hazard combination, identify climate variables and thresholds

Step 3 – Assign a spokesperson to report your findings to the larger group

UNCTAD Regional Workshop: "Climate change impacts and adaptation for coastal transport infrastructure in the Caribbean"

Worksheet

Operational Thresholds:

Component	Hazard	Variable	Threshold	Impacts

Were you able to identify thresholds?

Are there common thresholds across facilities?

What is the greatest concern you identified?

What challenges did you face in this exercise?

With this information...

Collect projections on specific climate variables

5Cs clearinghouse – <u>http://clearinghouse.caribbeanclimate.bz/</u>

With this information...

Collect projections on specific climate variables

- 5Cs clearinghouse <u>http://clearinghouse.caribbeanclimate.bz/</u>
- Determine potential frequency of impacts over time

Climate			Disruptions (average days/year)		
Stressor	Sensitivity	Threshold	2000-2019	2040- 2059	2080 - 2099
Airports					
Extreme Employee Heat ability to work safely outdoors	Employee ability to	Heat Index* over 30.8 °C (87.5 °F) with relative humidity 80% is "high" risk	2.05	13.2	53.7
	work safely outdoors	Heat Index* over 32.9 °C (90.7 °F) with relative humidity 80% is "very high" risk	0	1.05	11.8
		Boeing 737-500 aircraft would not be able to take off from HIA if the temperature exceeds 31.2°C without reducing aircraft loads	1.1	12.1	67.5
		Boeing 737-400 aircraft would not be able to take off from HIA if the temperature exceeds 31°C without reducing aircraft loads	1.7	12.25	67.9

Table 1. Days of disruptions for the airports and sea ports.

Key Takeaways

- Methodology provides a structured process for collecting existing knowledge
- Thresholds may not already be documented
- The process is beneficial for several reasons
 - #1 Helps focus search for climate projections
 - #2 Provides method to prioritize amongst risks
 - #3 Provides method to ultimately quantify risks in economic and other terms

Objectives

- Understand:
 - The purpose of operational thresholds
 - How to identify operational thresholds for your facility
 - How to use operational thresholds to assess vulnerabilities

Next Steps

• Work with others at your facility to identify thresholds

- List components
- Identify thresholds for different component/hazard relationships
- Identify priority climate data needs

Collect projections on specific climate information

Thank you!

Cassandra Bhat, ICF

cassandra.bhat@icf.com

Austin Becker, URI

abecker@uri.edu

Gerald Bove, URI

gerald_bove@brown.edu

