

Climate Risk and Vulnerability Assessment Framework for Caribbean Coastal Transport Infrastructure

Climate Change Impacts on Coastal Transport Infrastructure in the Caribbean: Enhancing the Adaptive Capacity of SIDS

6 December, 2017

United Nations Conference on Trade and Development

Regional Workshop - Barbados

Cassandra Bhat ICF

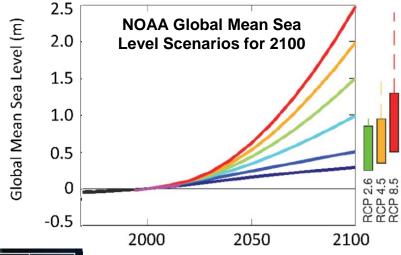
Agenda

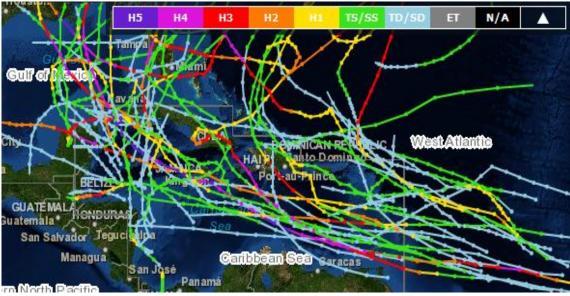
Understanding and Addressing Coastal Transport Infrastructure Climate Change Vulnerability in Caribbean SIDS

- Why is it important?
- Framework overview
- Key steps

Why is it important?

Understanding and addressing coastal transport infrastructure climate change vulnerability in Caribbean SIDS


Caribbean SIDS Rely on Transport Infrastructure

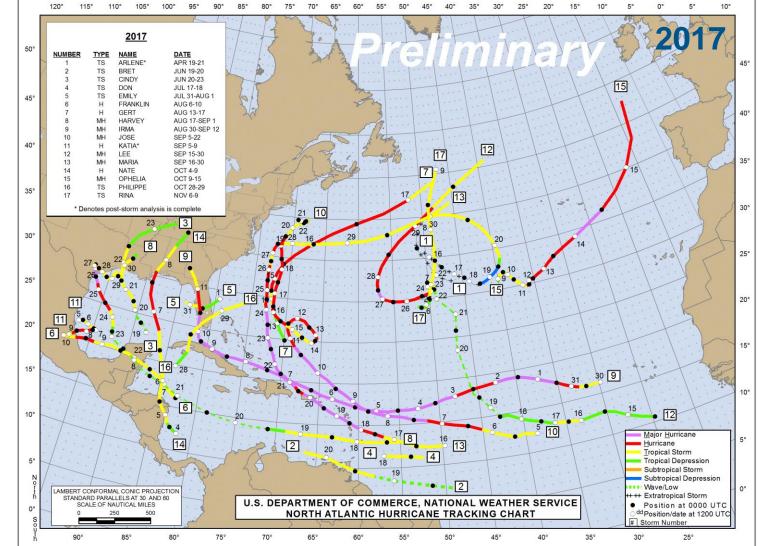


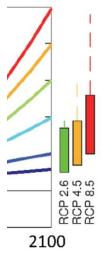
Supplies food manufactured energy

Coastal Transport Infrastructure Is Highly Exposed to Climate Variability and Change

- Warmer temperatures
- Greater variability in precipitation
- Sea level rise
- Hurricanes and tropical storms

Coastal Transport Infrastructure Is Highly Exposed to Climate Variability and Change


Gr


Se

Hu

Gulf o

GUATE

Left: Nation National O

rn Mor

Coastal Transport Infrastructure Is Highly Sensitive to Climate Variability and Change

Climate change and extreme weather affect transport infrastructure

Historical climate events show the costs to and implications for transport services

 In 2015, Tropical Storm Ericka triggered flash flooding, slope failure, and debris generation in the Commonwealth of Dominica:

	Transport Impacts		Economic Impacts
•	60% of damages were to the transport sector Floods/landslides damaged 17% of roads and 6% of bridges	•	Roads and Bridges Damages: US\$288 million Airports Damages: US\$15 million Airport/Seaport Transport Sector Damages and Losses: US\$977,654
•	Both airports were flooded, damaging electrical equipment	•	Airport Operations Losses: US\$14.5 million to airlines and US\$80,000 to airports Airport shutdown impacted the tourism industry

Coastal Transport Infrastructure Is Highly Sensitive to Climate Variability and Change

Climate change and extreme weather affect transport infrastructure

Historical climate events show the costs to and implications for transport services

 In 2015, Tropical Storm Ericka triggered flash flooding, slope failure, and debris generation in the Commonwealth of Dominica:

	Transport Impacts		Economic Impacts		
•	60% of damages were to the transport sector	•	Roads and Bridges Damages: US\$288 million Airports Damages: US\$15 million		
Not to mention Harvey, Matthew, Irma, Maria					
•	Both airports were flooded, damaging electrical equipment	•	Airport Operations Losses: US\$14.5 million to airlines and US\$80,000 to airports Airport shutdown impacted the tourism industry		

Reducing Transport Sector Vulnerability in SIDS is Critical

Disruptions to the transport network can have immediate and severe consequences on:

- Economy
- Development goals of the island
- Health and lifestyles of residents

The challenge of maintaining these critical services is already significant and will only increase as the climate changes

Considering Climate Information Can Increase Resilience of Coastal Transport Infrastructure

- Historically, climate-sensitive investments and decisions assumed "stationarity"
 - Stationarity = climate conditions remain the same when averaged over a sufficiently long time period
- However, climate model projections and observations indicate non-stationarity

Considering Climate Information Can Increase Resilience of Coastal Transport Infrastructure

- Location and design of new infrastructure
 - Location
 - Elevation
 - Drainage capacity
 - Material
- Maintenance practices for existing infrastructure
 - Pavement repair
 - Culvert maintenance
- Capital and maintenance investment priorities
- Operational adjustments
 - Construction timing
 - Aircraft takeoff weights
- Emergency management scenarios
- Long-range planning

Build the economic case for *proactive* and *opportunistic* resilience investments

Framework Overview

Understanding and addressing coastal transport infrastructure climate change vulnerability in Caribbean SIDS

Framework Goals

Provide a:

- Structured way for organizations in SIDS to approach climate change adaptation
- Flexible, practical approach that uses available data to inform decisionmaking
 - Framework outlines a continuum of approaches that can be used depending on data available

Audience: Port and Airport Managers in SIDS

By following the recommendations and steps in the methodology, transport managers can work towards identifying critical assets, current and future vulnerabilities, and potential adaptation strategies for the transport sector.

Key Principles

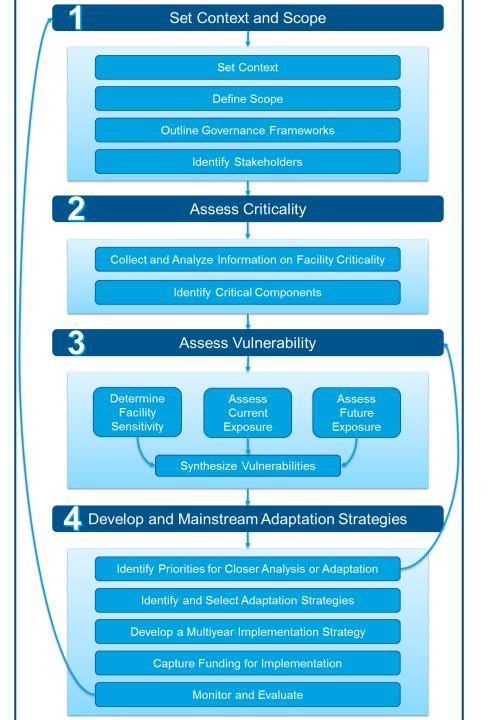
#1: Keep the end goal in mind

The purpose of assessing vulnerability is to improve decision-making with respect to climate variability and change. If possible, identify specific decisions to inform.

#2: Work within data limitations

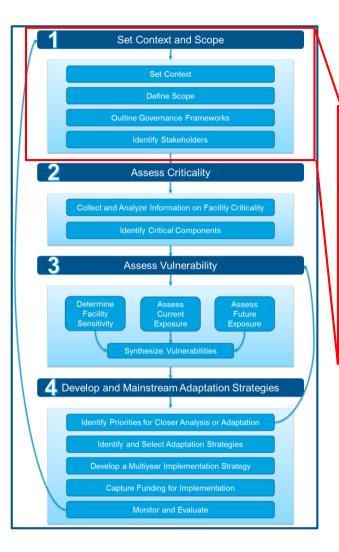
Data limitations—be they gaps in data on current assets, historical weather, future climate, or others—need not curtail adaptation efforts.

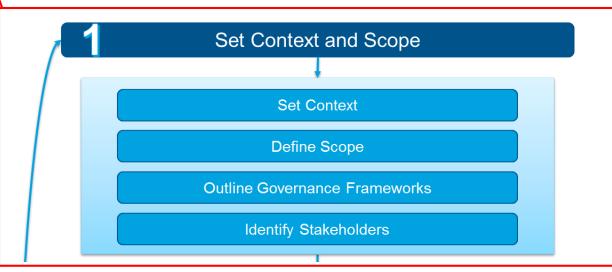
#3: Engage stakeholders


Stakeholder engagement is central to an effective climate change vulnerability assessment process and has multiple benefits, including:

- Help fill data gaps
- Build support for adaptation efforts
- Build capacity

Key Steps


Understanding and addressing coastal transport infrastructure climate change vulnerability in Caribbean SIDS



Stage 1: Set Context and Scope

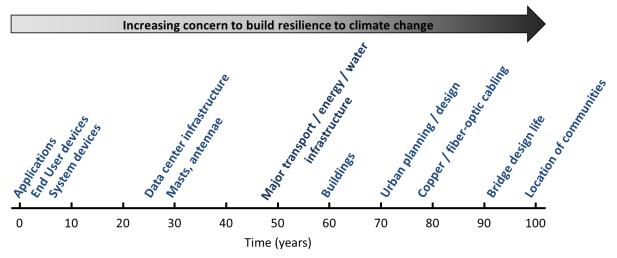


1.1 Set Context

- What are the pre-existing stressors to the transport system?
- How does your adaptation effort fit into the development needs of the country?
- Who are the main agencies and individuals responsible for adaptation?
- What related work has been done so far?
- What decisions are we trying to inform?

Saint Lucia Case Study Example

Existing studies or assessments completed prior to the case study include:


- CARIBSAVE Climate Change Risk Atlas, Climate Change Risk Profile for Saint Lucia
- World Bank Report: Climate Change Adaptation Panning in Latin America and Caribbean Cities, Final Report: Castries, Saint Lucia
- Second National Communication on Climate Change for Saint Lucia

1.2 Define Scope

Define the scope of the vulnerability analysis. Decide on:

- Physical Scope
 - What facilities to include? (e.g., focus on critical, likely to be vulnerable)
- Temporal Scope
 - What is the relevant time period for decision-making? What decisions are you trying to inform?

- Climate Scope
 - What climate hazards to include?

1.2 Define Scope

Jamaica and Saint Lucia Case Study Example

- Physical scope Four specific assets in each country were selected on the basis of their economic and cultural importance to each nation.
- Temporal Scope 2050s, to align with a 35-year long-term planning horizon, which corresponds with expected asset lifetimes and relevant long-term transport plans
- Climate Scope Focused on coastal hazards of sea level rise and tropical storms; secondary emphasis on inland flooding and extreme heat

1.3 Outline Governance Frameworks

Outline the following for the selected transport facilities:

- Ownership and Operational Framework
 - What entities own and operate the facilities, and to whom are they responsible?
- Legislative and Regulatory Framework
 - What laws or statutes govern the behavior of the facilities?

Jamaica Case Study Example

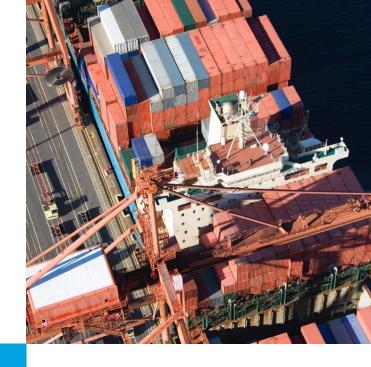
The study team consulted with stakeholders to identify legislative or regulatory constraints on the airports, such as:

- Civil Aviation Regulations of 2004: requirements for operations of aerodromes
- Protected Areas Policy of the Palisadoes Peninsula: policy to protect the sensitive ecosystem

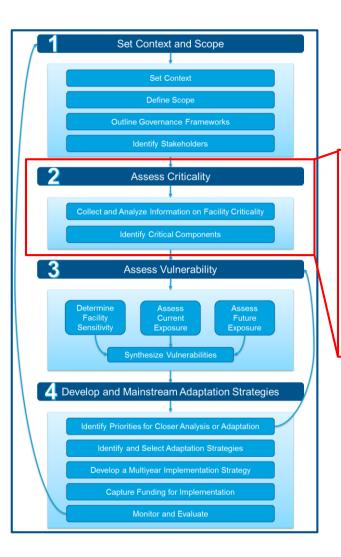
1.4 Identify Stakeholders

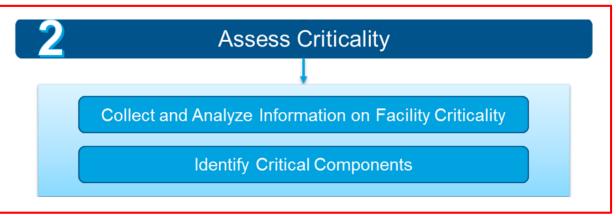
Develop a list of stakeholders to engage during the assessment process:

- Port and airport managers
- Port and airport authorities (e.g., Maritime Authority, Airport Authority)
- Private sector operators (e.g., ship owners, airline representatives)
- Asset owners and operators of interdependent infrastructure (e.g., energy, water)
- Government agencies overseeing transport, environment, natural development, and disaster preparedness
- Meteorological service
- Local or regional universities
- International or other organizations who have done related work


Benefits of engaging stakeholders include:

- Help fill data gaps
- Build support for adaptation efforts
- Build capacity to address risks


Tips for Engaging Stakeholders


- Establish regular communication protocols
- Establish clear requests for stakeholders

Stage 2: Assess Criticality

Defining Criticality

Criticality is the overall importance of a facility or component.

2.1 Collect and Analyze Information on Facility Criticality

Facility Operations Data

- Volume of passengers
- Value of cargo transported
- Cost to replace or repair the facility

Interconnectivity Data

- Whether facility provides access to economic centers
- Whether facility is necessary for power or communications systems to operate
- Whether facility is necessary to maintain access to water or food supplies

Health/Safety Implications of Facility

- Whether facility is necessary for hurricane evacuation
- Whether facility provides access to hospital or healthcare

Economic Contributions Data

- Contributions of facility to tourism
- Contribution of facility to GDP
- People employed at the facility

Not all data will be available within a reasonable timeframe or level of effort

Set Context and Scope Assess Criticality Assess Vulnerability Mainstream Adaptation Strategies

2.1 Collect and Analyze Information on Facility Criticality

Jamaica Case Study Example: Donald Sangster International Airport

The criticality assessment for Donald Sangster International Airport (DSIA) in Jamaica included the following information, which came from the noted sources:

- Of the approximately 1.7 million annual visitors to Jamaica, 72% use DSIA as their primary airport (Source: DSIA airport website and Airports Authority of Jamaica)
- The share of visitors using DSIA as their primary airport has been increasing since the 2008/2009 fiscal year (Source: Airports Authority of Jamaica)
- On average, 3.5 million persons traveled through the airport annually from 2010 to 2015 (Source: arrivals and departures data from DSIA)
- Nearly 65,000 kilos of cargo and mail came through DSIA in 2015 (Source: data from DSIA)
- Because of its location on the north coast, close to hotels and tourist attractions, the airport serves as a critical tourist gateway into the island, without which arriving passengers would have to travel long hours from NMIA to reach their north coast destinations (Source: stakeholder interviews)

Source: Smith Warner, 2017 (Case Study Report - Jamaica)

Set Context and Scope Assess Criticality Assess Vulnerability Develop and Mainstream Adaptation Strategies

2.1 Collect and Analyze Information on Facility Criticality

Jamaica Case Study Example: Donald Sangster International Airport

The criticality assessment for Donald Sangster International Airport (DSIA) in Jamaica included the following information, which came from the noted sources:

Of the approximately 1.7 million annual visitors to Jamaica, 72% use DSIA as their

Doesn't have to be comprehensive or exclusively quantitative

Goal is to gather available information, make the case for why ensuring operability of the facility is important

 Because of its location on the north coast, close to hotels and tourist attractions, the airport serves as a critical tourist gateway into the island, without which arriving passengers would have to travel long hours from NMIA to reach their north coast destinations (Source: stakeholder interviews)

Source: Smith Warner, 2017 (Case Study Report - Jamaica)

2.2 Identify Critical Components

Define the relationship of different components to the functioning of the whole facility

Port components may include:

- Docks
- Navigation channel
- Cranes
- Utilities
- Generators
- Buildings and warehouses
- Access roads
- Personnel
- Drainage system

Airport components may include:

- Runways, taxiways, and aprons
- Terminals and other buildings
- Air traffic control
- Communication systems
- Access roads and parking lot
- Utilities
- Personnel
- Navigational aids
- Weather instrumentation
- Drainage system

2.2 Identify Critical Components

Define the relationship of different components to the functioning of the whole facility

Port components may include:

- Docks
- Noviantian shannal

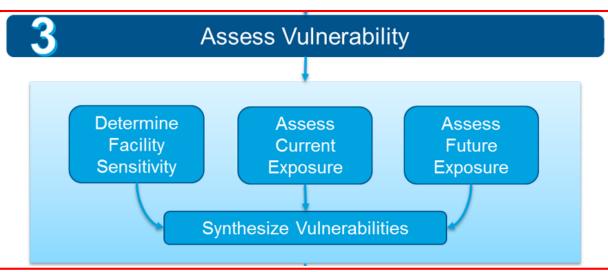
Airport components may include:

- Runways, taxiways, and aprons
- Terminals and other huildings

Jamaica Case Study Example

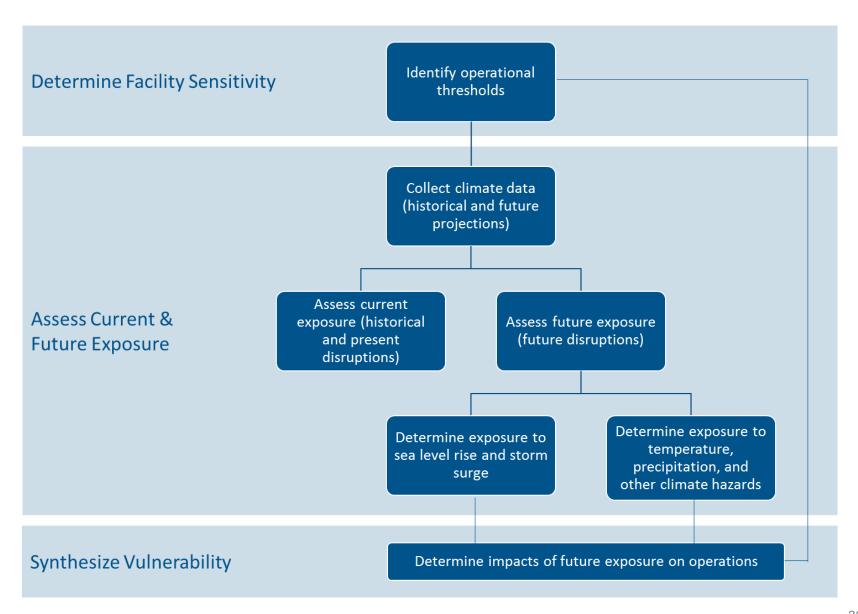
Critical components at Donald Sangster International Airport:

- Runway: This is the sole runway, therefore its operability is directly connected to the operability of the airport
- Access Road: The airport's access road is the only way of accessing the airport
- Personnel
- Drainage system

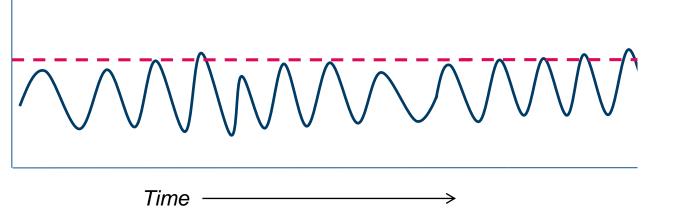

- Navigational aids
- Weather instrumentation
- Drainage system

Stage 3: Assess Vulnerability

Choosing Between Vulnerability Assessment Methods


	Advantages	Disadvantages
Qualitative	Easily understandableUseful for prioritizing actionRelatively low cost to prepare	 Does not communicate complex or less obvious aspects of vulnerability well May be open to interpretation and therefore contain uncertainties Does not directly imply the nature of adaptations
Quantitative	 Helpful for informing cost-benefit analyses of adaptation options Takes advantage of available data Can communicate complex or less obvious aspects of vulnerability 	 Can be time and resource intensive Can be long, technical, hard to follow and thus not used effectively if sufficient outreach is not conducted May not have all desired data

Determine the approach based on the intended use of the assessment:


- To identify priorities for more detailed study
- To inform land use planning decisions
- To inform long-term facility plans
- To inform infrastructure investment decisions
- To build the economic case for adaptation
- To design adaptation strategies

Overall Vulnerability Assessment Process

Conceptual Example – Climate Change Impacts Over Time

3.1 Determine Facility Sensitivity

Sensitivity is the degree to which the facility is likely to experience direct physical damage or operational disruptions

General Sensitivity Relationships

Facility Component

Climate	Docks	Crane	Access	Other
Hazard		Operations		
Sea Level Rise	Higher sea levels can increase the risk of chronic flooding and lead to permanent inundation of dock facilities, making a port inoperable.	Not sensitive.	Sea level rise could affect port access routes.	Not applicable.
Tropical Storms/ Hurricanes/ Storm Surge	Storm surge can damage marine port facilities, causing delays in shipping and transport. For example, Hurricane Ivan in Grenada damaged the main port terminal and prevented normal operations for three weeks (OECS, 2004).	Not sensitive.	Tropical storms can cause roadway damage and debris movement, blocking access to the port for staff and ground transport.	Port operations may be halted for the duration of the storm. Floodwaters or winds can also transport debris that must be removed before operations can resume.
Wind	Not sensitive.	Cranes cannot be used above certain wind speeds. Inoperable cranes can cause delays in shipping.	Wind can blow over road signs and stir up dust from unpaved roads. Downed signs and swirling dust can create confusing and dangerous travel conditions.	High wind speeds could create hazardous working conditions for port staff. Winds can also transport debris that must be removed before operations can resume.
Extreme Heat	Not sensitive.	Not sensitive.	Extreme heat can result in asphalt pavement softening or rutting, or cracks in concrete pavement.	Extreme heat can create hazardous working conditions for port staff and could deteriorate paved terminal areas. Extreme heat can also raise energy costs for cooling.
Heavy Precipitation /Flooding	Heavy rain can reduce visibility and create flooding, causing damage to port structures and equipment and delaying shipping and transport.	Flooding can cause damage to crane equipment, making it inoperable and halting or slowing	Heavy rain can overwhelm existing draining systems and cause flooding, creating pavement and embankment failure, erosion, debris movement, and	Flood waters can transport debris that must be removed before operations can resume. For example, this has occurred at

Establish Operational Thresholds

What is an operational threshold?

Level of weather conditions at which a facility or piece of infrastructure experiences disruption or damage

- In what conditions is the facility likely to experience damage or disruption?
 - Does the facility have official operational manuals that specify thresholds?
 - What conditions is it designed to withstand?
 - In which conditions has it been unable to operate in the past?
 - In which conditions has it been damaged in the past?

Why establish thresholds?

- Helps focus search for and analysis of climate data (historical and projected)
- Process for sharing and documenting critical institutional knowledge
- Informs monitoring and evaluation over time
- Helps develop practical estimates of risks over time

Establish Operational Thresholds

Spectrum of Thresholds

- Heavy precipitation reduces visibility
- Waves overtop dock
- Very hot days threaten perishable goods
- Standing water on runway

- Cranes can't operate at wind speeds > 25 m/s
- Pavement designed to tolerate maximum seven-day temperature of 41.4°C (106.4°F)

Examples

Identifying Thresholds: Aircraft Runway Length Requirements and Temperature

Individual aircraft manufacturers set minimum runway length requirements related to temperature:

- Identify the type of aircraft that use the airport or might use it in the future.
- For major aircraft categories, find airport specifications on the manufacturer's website.
- Read the tables for the elevation of your airport to determine how runway length requirements change with temperature.

Takeoff Runway Length Requirements by Temperature and Aircraft¹

	Mean maximum daily temperature of the warmest month						
Boeing:	Standard Day: 15°C	30°C	37.2°C	40°C	50°C		
737-600	2,134 m	2,316 m	3,048 m	n/a	3,505 m		
737-700/-700W	2,804 m	3,048	3,810 m	n/a	4,572 m		
737-800/-800W/BBJ2	2,377 m	2,469 m	n/a	3,078 m	4,572 m		

Identifying Thresholds: Sea Level Rise

To obtain an indication of how much "room" the facility has to accommodate sea level rise:

 Measure the vertical distance between immediate coastal infrastructure (such as docks) and mean higher-high water levels

Examples

Identifying Thresholds: Aircraft Runway Length Requirements and Temperature

Individual aircraft manufacturer

- Identify the type of aircraft that
- · For major aircraft categories,
- Read the tables for the eleva change with temperature.

Takeoff Runwa

Boeing: Sta 737-600 737-700/-700W 737-800/-800W/BBJ2 This afternoon's activity will focus on identifying thresholds

ated to temperature:

s website.

ngth requirements

Aircraft¹

varmest month					
40°C	50°C				
n/a	3,505 m				
n/a	4,572 m				
3,078 m	4,572 m				

 Measure the vertical distance between immediate coastal infrastructure (such as docks) and mean higher-high water levels

Determine Impact of Crossing Thresholds

Direct impacts to facilities

- Duration of disruption
- Cost of operational shutdown
- Cost of repairs

Indirect impacts and Losses

- Lost economic activity
- Disrupted industries (e.g., agriculture, energy, tourism)
- Lost ecosystem services

Spectrum of Impacts

- Insignificant
- Minor
- Moderate
- Major
- Extreme

Quantify what's possible, and also list what's not possible to quantify (e.g., indirect losses)

- Rainfall > 200 mm in 24 hours causes closure for 3 days
- Each hour of closure costs \$10,000
- Water elevations > 1 m would cause \$2,000,000 in damage

3.2 Assess Current Exposure

How frequently the relevant sensitivity thresholds have been exceeded in the past?

- Meteorological data
- Anecdotal evidence/qualitative ratings
- Climate model hindcasts

Saint Lucia Case Study Example

The study team used climate model hindcasts to estimate how frequently the following thresholds were exceeded from 1970-1999:

- Heat Index over 30.8°C with relative humidity of 80%: 0.6 days per year
- Days with temperature > 31°C: 0.33 days per year
- Rainfall > 20 mm: 45.9 days per year

Estimate how climate change could affect facilities in the future

Two main types of climate data:

Temperature, precipitation, and other hazards

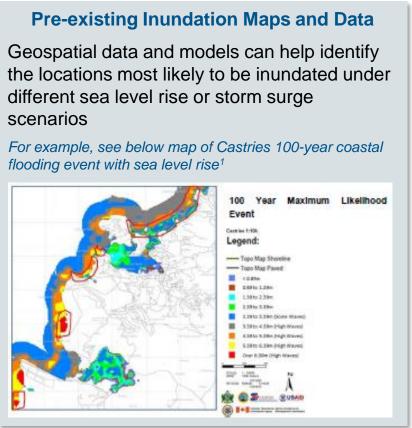
Sea level rise and storm surge

Presentation this afternoon

will elaborate on gathering climate data to determine exposure to temperature and precipitation using a variety of methods

Determine Exposure to Sea Level Rise and Storm Surge

Determine how much sea level rise may be expected

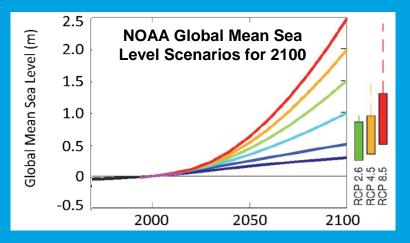

Determine which locations might be affected using one of the following approaches:

- Review of pre-existing inundation maps and data
- Inundation mapping
- Qualitative assessment

Determine which locations might be affected by sea level rise:

Option 1

Determine which locations might be affected by sea level rise:


Option 2

Develop Inundation Maps

Use the following to do your own mapping of potential inundation:

- Sea level rise scenarios
- Current tidal surface elevation
- Digital elevation model of the study locations – higher resolution the better
 - LiDAR data limited in the Caribbean

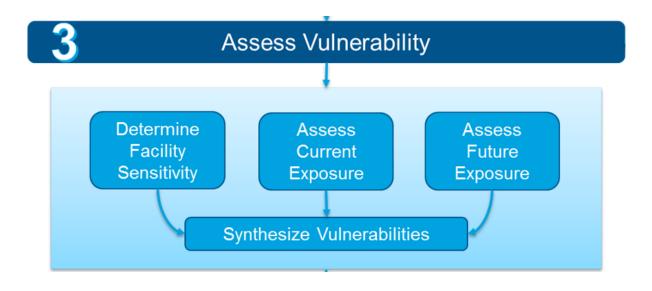
How much SLR to plan for?

May vary based on **risk tolerance** for the decision and **lifetime of project**.

Lower risk tolerance and higher lifetime = higher SLR scenario

Map literature-supported levels of sea level rise on top of mean higher high water

Determine which locations might be affected by sea level rise:


Option 3

Qualitative Assessment

Estimate potential flood risk areas using best available information and professional judgment.

For example, meet with stakeholders to identify low-lying areas and places that historically flood during high tide events.

3.4 Synthesize Vulnerabilities

Quantitative Example

Identify how often operational thresholds are expected to be exceeded in the future and quantify impacts

Operational Threshold	Precipitation > 20 mm per day
Impact Description	Cranes at the port are unable to operate
Quantified Impacts	6 hours / \$60,000
Current Frequency	2 days/year
Future Frequency	4 days/year
Current Risk	12 hours / \$120,000
Future Risk	24 hours / \$240,000

Qualitative Example

Combine the information on criticality, sensitivity, current vulnerability, and exposure to identify the potential vulnerabilities using a vulnerability matrix, risk matrix (below), qualitative ranking, or vulnerability profile

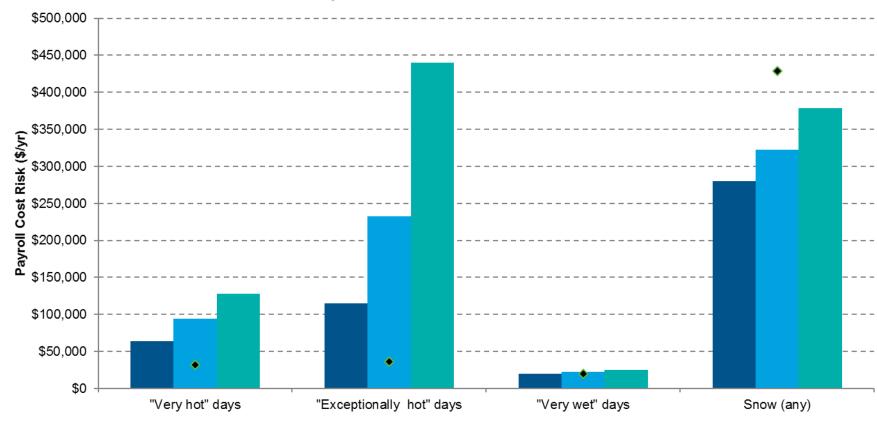
		Consequence of Haza				
		Insignificant	Minor	Moderate	Major	Extreme
	Almost Certain	Medium	High	Very High	Very High	Very High
₽	Likely	Medium	Medium	High	Very High	Very High
Likelihood Hazard	Possible	Low	Medium	Medium	High	Very High
celih	Unlikely	Low	Low	Medium	Medium	High
<u> </u> = ₽	Rare	Low	Low	Low	Medium	Medium

3.4 Synthesize Vulnerabilities

Quantitative Example

Identify how often operational thresholds are expected to be exceeded in the future and quantify impacts

Precipitation > 20 mm per day
Cranes at the port are unable to operate
6 hours / \$60,000
2 days/year
4 days/year
12 hours / \$120,000
24 hours / \$240,000


Qualitative Example

Combine the information on criticality, sensitivity, current vulnerability, and exposure to identify the potential vulnerabilities using a vulnerability matrix, risk matrix (below), qualitative ranking, or vulnerability profile

		Consequence of Hazard					
		Insignificant Minor N		Moderate	Major	Extreme	
	Almost Certain	Medium					
Jo	Likely	Medium	Medium				
hood	Possible	Low	Medium	Medium			
ikelih	Unlikely	Low	Low	Medium	Medium		
Pa E	Rare	Low	Low	Low	Medium	Medium	

Quantitative Example in Practice

3.4 Synthesize Vulnerabilities

Quantitative Example

Identify how often operational thresholds are expected to be exceeded in the future and quantify impacts

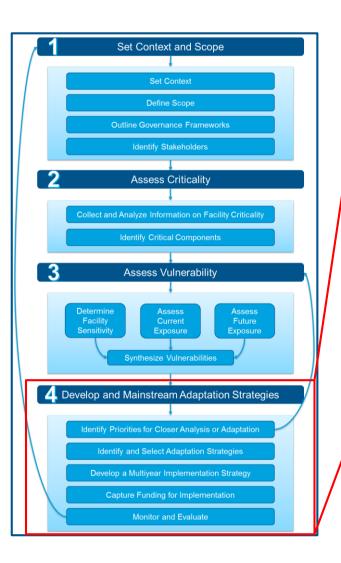
Impact Description	Cranes at the port are unable to operate
Quantified Impacts	6 hours / \$60,000
Current Frequency	2 days/year
Future Frequency	4 days/year
Current Risk	12 hours / \$120,000
Future Risk	24 hours / \$240,000

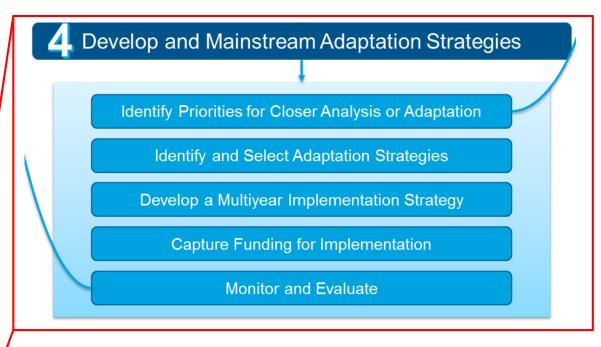
Qualitative Example

Combine the information on criticality, sensitivity, current vulnerability, and exposure to identify the potential vulnerabilities using a vulnerability matrix, risk matrix (below), qualitative ranking, or vulnerability profile

		Consequence of Hazard					
		Insignificant	Minor Moderate		Major	Extreme	
	Almost Certain	Medium	High	Very High	Very High	Very High	
<u>م</u>	Likely	Medium	Medium	High	Very High	Very High	
poo _	Possible	Low	Medium	Medium	High	Very High	
Likelihood Hazard	Unlikely	Low	Low	Medium	Medium	High	
章 훈	Rare	Low	Low	Low	Medium	Medium	

Qualitative Example in Practice


Avatiu Port, Rarotonga, Cook Islands


CLIMATE EVENT	E	XISTING RISK*	1		STANDING OF IMATE RISK	
CLIMATE EVENT	Consequence			Consequence		
	(Impact)	Likelihood	Risk	(Impact)	Likelihood	
				Higher	More	Comments
				Lower	Less	
				No Change	No Change	
High Wind (e.g crane safety, navigability)	Moderate	Likely	High	Higher	More	Tug boat most vulnerable. High wind - just shut down services/stay in port.
High Rainfall (e.g flash flooding in surrounding districts or site drainage issues)	Minor	Possible	Medium	Same	More	
High Waves (e.g navigability, sea supply chain, breakwaters etc.)	Moderate	Likely	High	Higher	More	
Temperature	Minor	Almost Certain	High	Higher	More	
Sea Level Rise	Moderate	Almost Certain	Very High	Higher	More	
Tropical Cyclone (e.g combination of high winds, waves and storm surge)	Possible	Extreme	Very High	Higher	More	Years of cyclones. Lines boat and crane can be done within a day if conditions are ok. Tug can be brought in later if a bigger boat required. Once tug back in water takes about 4 hours to ballast the tug. NB in regards to 2005 cyclone- opened straight away and mess had to be cleaned up. Roofing was an issue that needed to be cleaned up and rocks removed. 1987 cyclone - was like a 100 year cyclone, wiped everything on seaward part of wharf pushed into the harbour (none of it had been removed). Previous failings - all cargo needs to be taken off-site.

Stage 4: Develop and Mainstream Adaptation Strategies

What is Adaptation?

Adaptation:

Process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities (IPCC)

Adaptation enhances resilience:

Capability to anticipate, prepare for, respond to, and recover from significant stressors with minimum damage

After a major flood, a pumping station in Santo Domingo was raised by the height of a person to avoid future impacts. (Source: ICF)

4.1 Identify Priorities for Closer Analysis or Adaptation

What are the adaptation priorities? (from vulnerability assessment)

Where do you need further information in order to act?

- Further analysis is useful where the costs of adaptation could be high
- Some adaptation measures can be justified from economic, social, and environmental perspectives regardless of the future changes in climate

Set Context and Scope Assess Criticality Assess Vulnerability Develop and Mainstream Adaptation Strategies

Strategic planning & policy

- Airport/port strategic plan
- Airport/port master plan
- Land-use planning
- Utility planning

Infrastructure development

- Infrastructure siting, design specifications
- Construction budget and schedule

Program management

Staff training

Operations & maintenance

- Maintenance schedules
- Annual maintenance budget

Emergency management & disaster risk reduction

- Worst case scenarios
- Proactive mitigation

Adaptation can apply to all levels of decision-making

Adaptation options may not be technologically innovative or climate change-specific; many will involve well-established technologies and management approaches applied wisely to address climate risks.

Key Principles

- "Mainstream" adaptation activities
- Define "success"
- Promote adaptive management
- Select low-regret options
- Select "win-win" options
- Favor reversible and flexible options
- Add "safety margins"
- Promote soft adaptation strategies
- Pre-plan for disaster response
- Increase system flexibility
- Use existing disaster risk reduction efforts to support adaptation

4.2 Identify and Select Adaptation Strategies

Types of adaptation strategies

Process Enhancements

- Provide warnings of extreme temperatures to minimize heat stress risks for workers
- Plan for increased debris removal operations
- Adopt a post-disaster reconstruction plan
- Improve transition
 planning to ensure staff
 with more experience
 transfer their institutional
 knowledge to new staff
- Track data on impacts over time

Ecosystem Enhancements

- Support sustainable land use and development to avoid slope destabilization and landslides
- Plant vegetation around airport buildings to lower surface/air temperatures, and manage stormwater runoff
- Support beach nourishment, coral reef protection, and nearshore seagrasses to reduce coastal flood risk

Engineering Enhancements

- Improve cranes' braking systems and wind speed prediction systems
- Elevate structures
- Harden shorelines
- Protect exposed utilities
- Increase drainage capacity
- Install building energy efficiency improvements

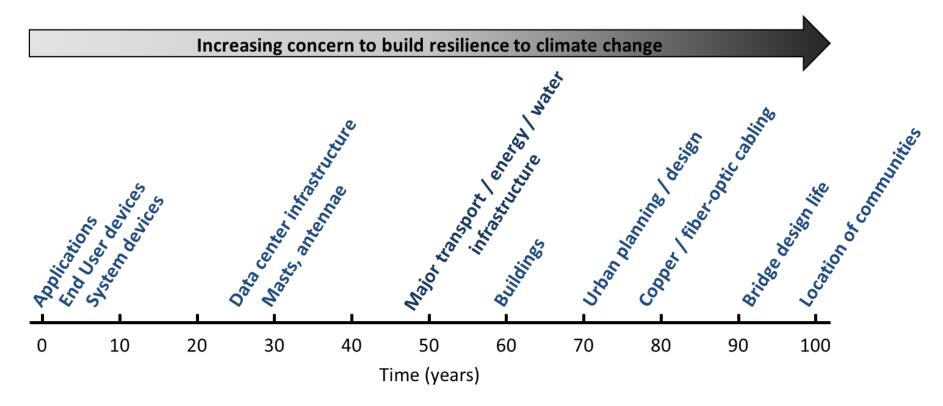
Consider a range of adaptation options - one measure will rarely do it all

4.2 Identify and Select Adaptation Strategies

Identify adaptation strategies through:

- Collective brainstorming with system and asset managers as well as relevant stakeholders to collaboratively brainstorm adaptation strategies
- Exploring relevant adaptation strategies proposed for or implemented locally or elsewhere
- Seeking guidance from relevant experts from both inside and outside of the refuge

Port of Manzanillo¹


- A recent study analyzed the climate risks and provided an adaptation plan for the port.
- The recommended actions work within the context of planning at the Federal, State, and Municipal levels and provide a range of strategy types.
- The plan includes:
 - Measures that build adaptive capacity (Update plans for evacuation/business continuity during extreme events)
 - Operational Measures (Improve procedures for handling materials under adverse conditions)
 - Engineered/hard structural solutions (Upgrade sediment traps)
 - Ecosystem based measures (Continue efforts to preserve mangrove areas for natural flood defenses)
 - Hybrid measures (Adjust port facilities in response to changing customer demands and trade flows)

Set Context and Scope Assess Vulnerability Assess Vulnerability Develop and Mainstream Adaptation Strategies

4.3 Develop a Multiyear Implementation Strategy

Consider Timing

- Near-term adaptation measures should
 - -Effectively address immediate vulnerabilities,
 - Address highest priority impacts
 - Be feasible and affordable to implement quickly

Example of Phased Adaptation

Assess Criticality

Set Context

and Scope

Assess Vulnerability Develop and Mainstream Adaptation Strategies

Incorporate SLR and other climate changes into design of new infrastructure opportunistically

Identify data and research needs

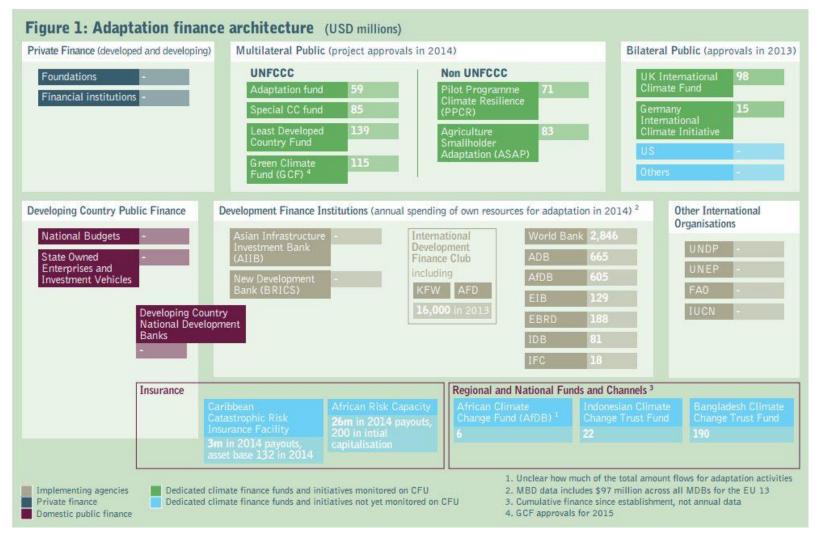
Incorporate CV&C considerations into long-range plans, establish policy to adapt

Establish a predisaster plan to facilitate climateresilient recovery

Track frequency of weather-related disruptions over time

Implement asset-specific adaptation strategies (e.g., protection, retrofits)

Example Process

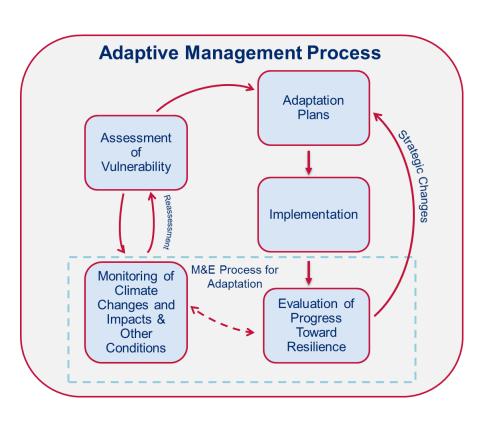


- Identify adaptation options
- Check that you've identified a wide range of options
 - Include a variety of types of adaptation measures?
 - Include some that can be implemented quickly and some that will take time?
- Sort the adaptation measures into:
 - Near-term / simple to implement
 - Long-term / complex to implement
- Simplify complex measures
 - Split into multiple measures or scale back?
 - Phase through incremental steps?
- Identify near-term adaptation strategies
- Develop phase adaptation plan

4.4 Capture Funding for Implementation

A variety of entities provide funding for climate change adaptation efforts

4.5 Monitor and Evaluate


Establish a monitoring and evaluation implementation plan

Adaptive Management

 Iterative process for revisiting adaptation practices to adjust to changing conditions and increase resilience over time

Monitoring and Evaluation

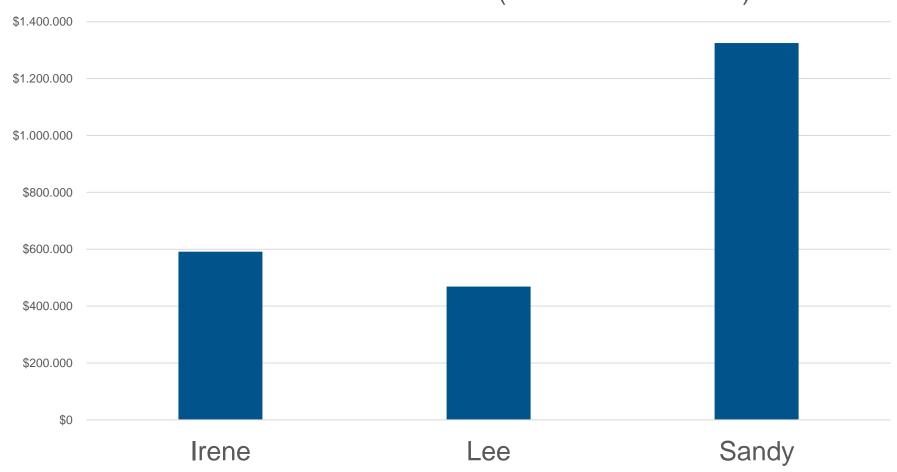
- Considers unique factors related to climate-resilient development:
 - Changes in climate information / impacts
 - Unexpected observations in climate and non-climate stressors / impacts
 - New technologies / approaches that may be more effective

Example Information to Track

Climate Changes

- Water levels
- Frequency of threshold exceedance

Climate Impacts


- Frequency of disruptions
- Duration of disruptions
- Cause of disruptions (e.g., heavy rain, heat, tidal flooding, storm surge)

Performance of Adaptation Strategies*

How do climate impacts differ before/after interventions?

Effects of Monitoring Actual Costs (SEPTA)

Documented Costs Incurred (Labor and Materials)

Sandy Damage

Lee Damage

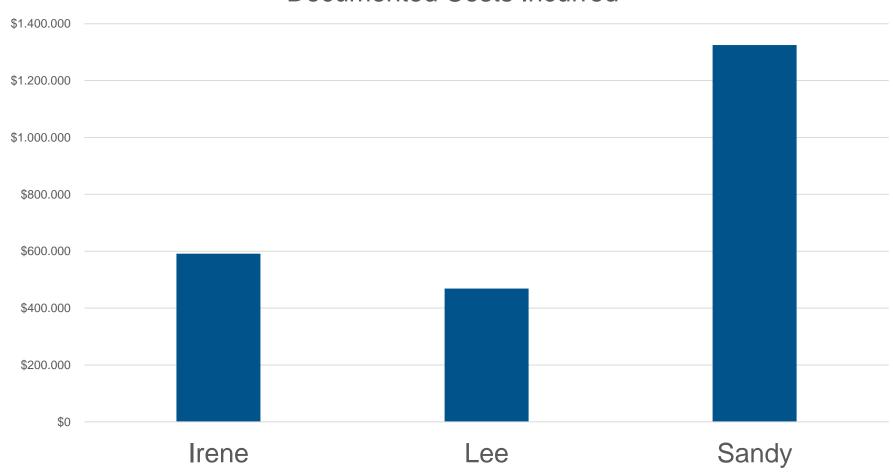

Irene Damage

Photo: SEPTA

Effects of Monitoring Actual Costs (SEPTA)

Documented Costs Incurred

Example: Using climate information in adaptive management

<u>Adaptation strategy</u>: Incorporate climate change data and trends into an airport's master plan. Integrating climate change at a high-level will influence other sectors of the airport as trends are realized.

Monitoring climate trends:

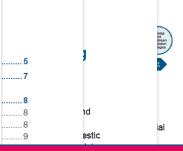
- Trends indicate that a runway is increasingly more vulnerable to flooding
- Trends indicate increasing intensity and frequency of heat waves which threaten employee safety


Adaptive Management:

- Re-evaluate lifespan of runway and consider adaptation options such as elevating the runway
- 2. Adjust protocol for employee safety such as changing work hours during high heat conditions

Final Thoughts

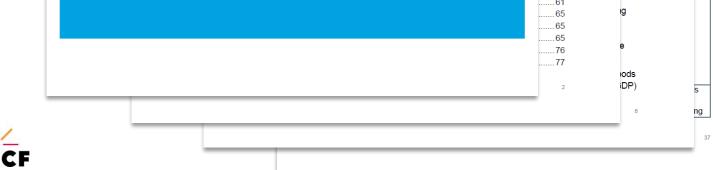
- Resilience is a good business practice
- Decisions may not be straightforward
- You are not in this alone
- Be flexible



Climate Risk and Vulnerability Assessment Framework for **Caribbean Coastal Transport** Infrastructure

Final Report

Climate Change Impacts on Coastal Transport Infrastructure in the Caribbean: Enhancing the Adaptive Capacity of



14).

Submitted to: **United Nations** Trade and Dev (UNCTAD) Geneva, Switz Submitted by:

Washington, C

- Step-by-step guidance
- Examples
- Links to data and other resources

Questions?

