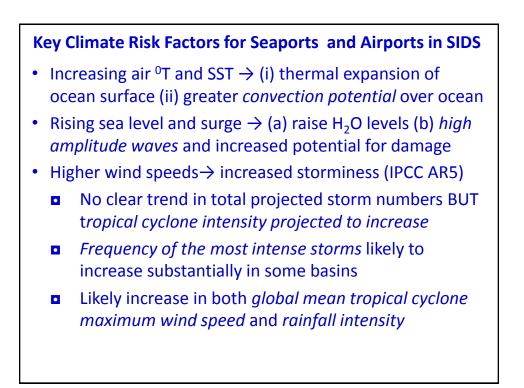
UNCTAD National Workshop Jamaica 30 May – 1 June 2017, Kingston, Jamaica

"Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS"

Climate Change Projections for the Caribbean and Implications for Air and Sea Ports

By

Leonard Nurse

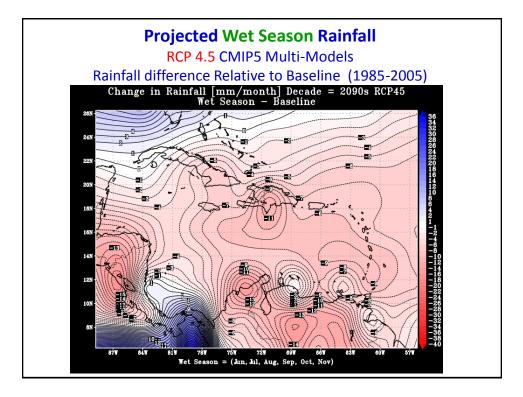

University of the West Indies, Barbados

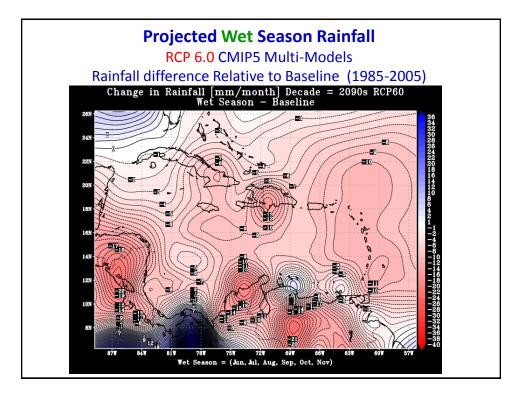
This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.

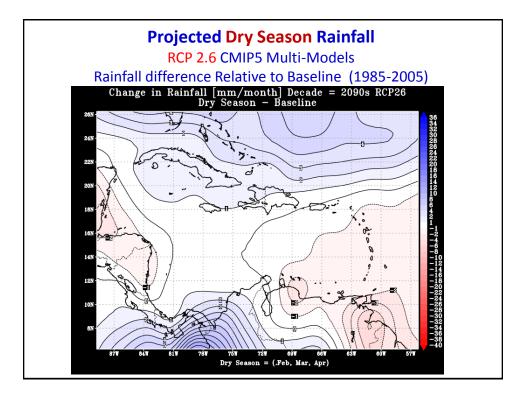
Climate Change Projections for the Caribbean and Implications for Air and Sea Ports

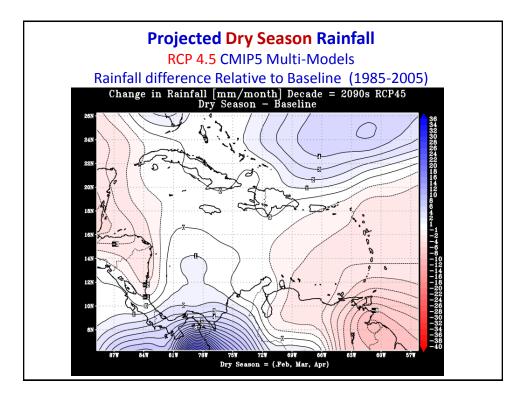
Leonard A. Nurse Faculty of Science and Technology University of The West Indies, Cave Hill, Barbados

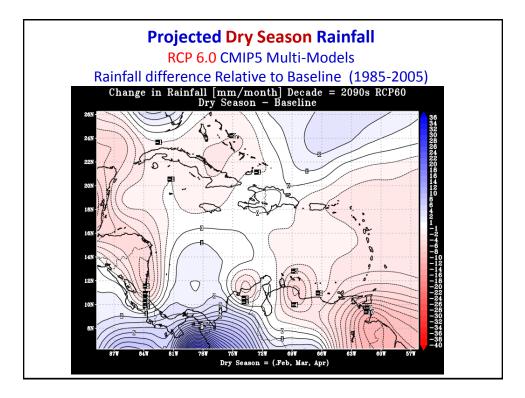
UNCTAD National Workshop" Climate Change Impacts & Adaptation for Coastal Transport Infrastructure in Caribbean SIDS" Kingston, Jamaica May 30 - June 1, 2017

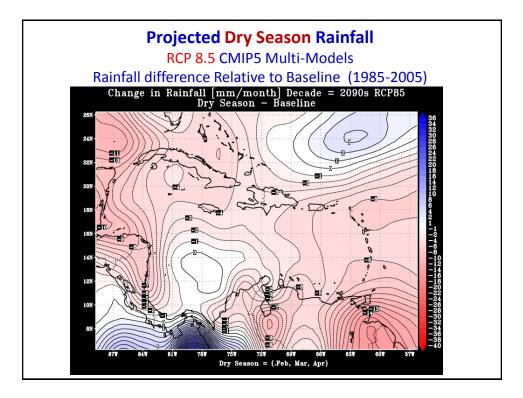


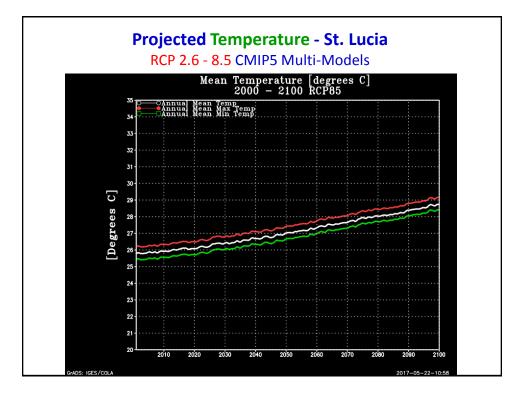

Representative Concentration Pathways Scenarios

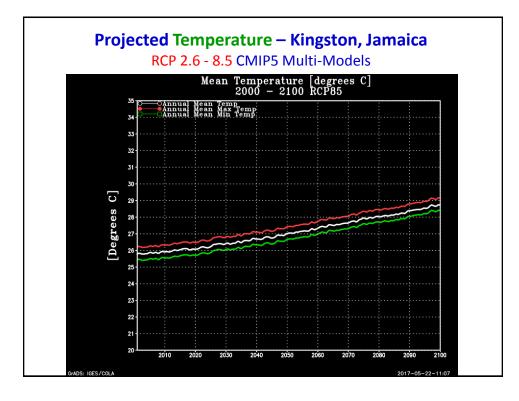

- The 4 RCPs are defined by the IPCC as follows:
- One high pathway → radiative forcing exceeds 8.5 W/m² by 2100 and continues to rise for some period thereafter;
- Two intermediate stabilization pathways → radiative forcing is stabilized at around 6.0 W/m² and 4.5 W/m² after 2100;
- One *low* pathway where radiative forcing peaks at about 3 W/m² before 2100 and declines thereafter.

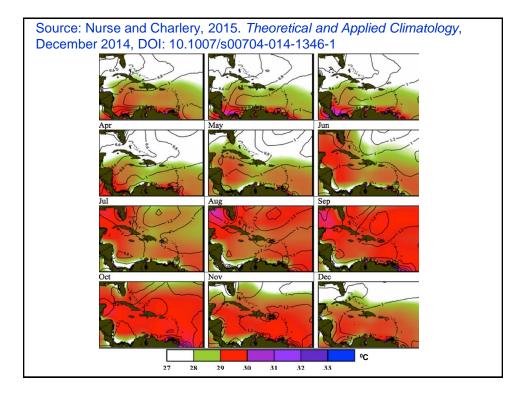

RCP	Description
RCP8.5	Rising radiative forcing pathway leading to 8.5 W/m ² (~1370 ppm CO_2e) by 2100.
RCP6	Stabilization without overshoot pathway to 6 W/m ² (~850 ppm $\rm CO_2e)$ at stabilization after 2100
RCP4.5	Stabilization without overshoot pathway to 4.5 W/m ² (~650 ppm CO_2e) at stabilization after 2100
RCP2.6	Peak in radiative forcing at \sim 3 W/m ² (\sim 490 ppm CO ₂ e) before 2100 and then decline (the selected pathway declines to 2.6 W/m ² by 2100).

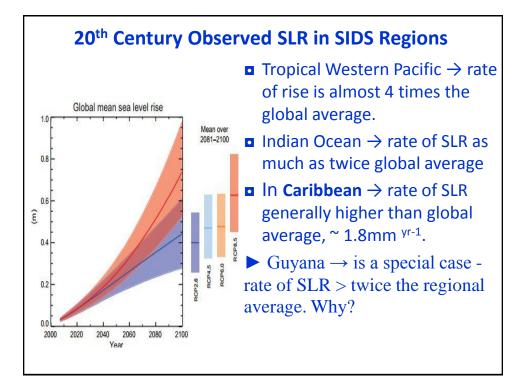


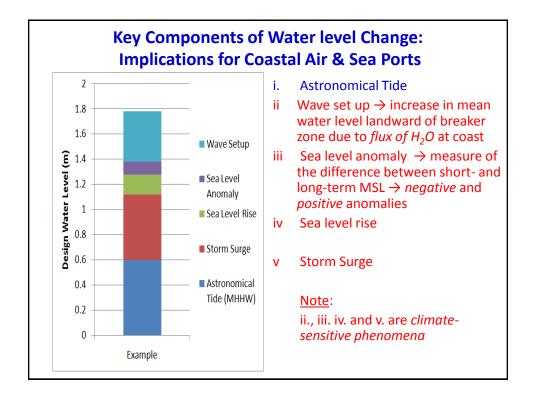


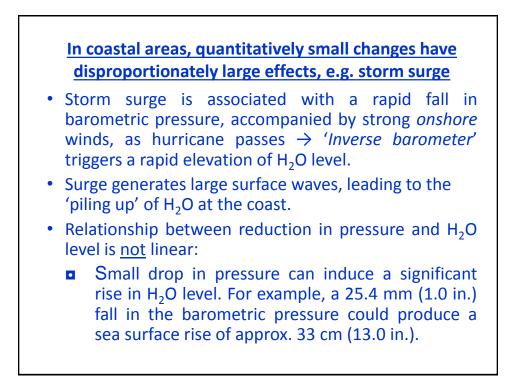


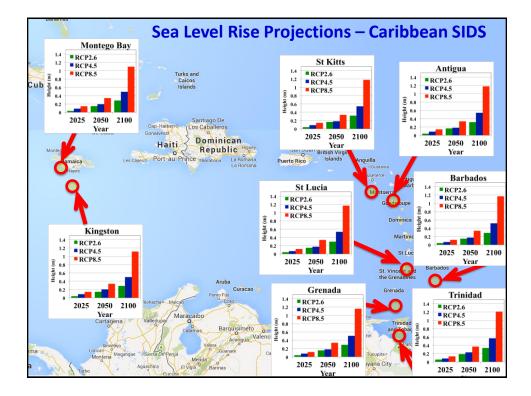


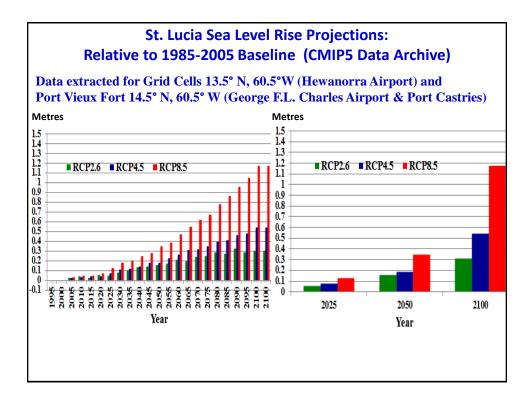


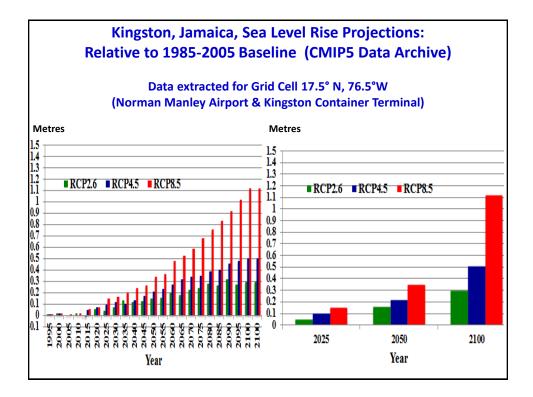


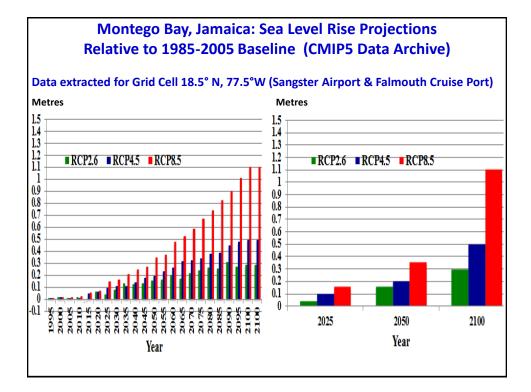










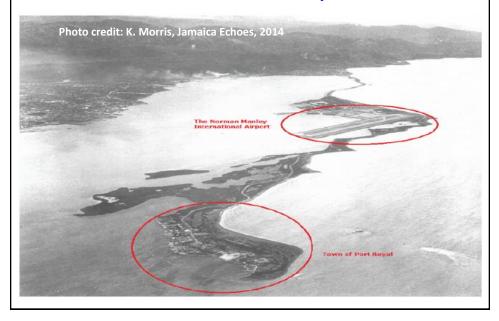


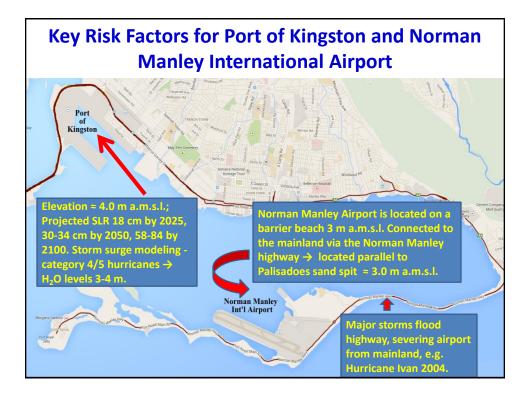


Jevrejeva, S., L. P. Jackson, R. E. M. Rivac, A. Grinsted and J. C. Moore, 2016. 'Coastal Sea Level Rise with Warming Above 2 °C'. *Proceedings National Academy of Sciences* (PNAS) 113 (47), 13342–13347

"If warming continues above 2 °C, then, by 2100, sea level will be rising faster than at any time during human civilization, and 80% of the global coastline is expected to exceed the 95th percentile upper limit of 1.8 m for mean global ocean sea level rise. Coastal communities, notably rapidly expanding cities in the developing world, small island states, United Nations Educational, Scientific and Cultural Organization Cultural World Heritage sites, and vulnerable tropical coastal ecosystems will have a very limited time after midcentury to adapt to these rises".

Transport & Infrastructure Damage - Hurricane Lenny, Nov. 1999


Northwestern & southern tip of the island most affected - landslides, severe beach erosion, airport flooded; 65% of Barbuda flooded, sanitary & water storage facilities overflowing; USD 51.3 M damages.


Damage & interruption at both airports •Pottersville to Rockway highway closed; flooding at air & seaports; Roseau severed from petroleum storage facilities; west coast sea defenses breached; USD 21 M damages.

Most damage at Soufriere , waterfront, Gros Islet, Anse La Raye, Choiseul; severe erosion on NW coast, housing & tourism damage; damage to seaport, flooding at airports; hospital cut off from town; USD 6.6 M.

Seawall & other coastal defenses at Airport facilities damaged; structural failure and boat damage at St. George's Port; much damage to roads linking main settlements to air- & seaport; heavy damage to tourism plant; USD 94.3 M damages.

Aerial Photo Showing Location of Norman Manley Airport and Town of Port Royal

Repeated damage from the passage of storms over many decades. In 2004 Hurricane Ivan caused > 300 m of shoreline erosion \rightarrow complete shutdown of airport and isolation of adjacent communities. A decision was taken to raise road to 3.2 m amsl (formerly 0.6 -1.0 m amsl) and build a coastal revetment, at cost > USD 65.3 M.

Sample of Assets and operations At Risk: Air- and Seaports

- Climate-induced changes can cause serious damage to port infrastructure \rightarrow major business interruption across entire supply chain:
- Tarmacs/runways & aircraft, fuel storage tanks
- Terminal facilities & associated throughput of passengers, goods and related services
- \Box Utilities \rightarrow H₂O, power supply, telecommunications
- Berths, bulkheads, seawalls, breakwaters
- **\square** Emergency response \rightarrow e.g. fire and ambulance services

Projected impacts could overwhelm existing capacities, e.g. storm and wastewater management systems

- Caribbean countries, like other SIDS, will be confronted by increased exposure and related cumulative risks at air & seaports
- ◊ Implications for *insurance*, *legal liability* & *operating costs*?

on Air and Sea Port Operations				
Variable	Exposure Unit	Effects	Adaptation/Adjustment	
Air Temperature	Aircraft	 Higher temperatures cause: Lower air density Reduced lift generated by aircraft wings; slower climbs Effect on performance & efficiency 	Lower take-off weights/loadsLonger runways	
More frequent Intense rainfall events	Terminals, warehouses & related facilities	 Greater incidence of flooding Sewerage & drainage capacities exceeded, etc. Disruptions and down- time Business losses; possible loss of market share Higher maintenance & operation costs 	 Redesign/retrofitting of infrastructure (e.g. drainage, sewerage) for greater capacity & efficiency Increased insurance/re- insurance to cover liabilities, demurrage, etc. Redesign of logistics, business plans, operations manuals, etc. 	

Examples of Effects of Two Climate Variables

Design Criteria for Port Cranes: Kingston Container Terminal: Delivery of 4 (ASCE-7 Standard: Minimum Design Loads....) Super Post-Panamax Ship-to-Shore Gantry • Wind pressure is a critical determinant of tie-down Cranes, 2005 (Photo: Gleaner Newspaper) uplift forces acting on cranes during operation. Hurricane wind pressure based on 50-yr Mean Recurrence Interval (MRI) ■ 3.0 s⁻¹ gust wind speeds, 10 m above ground Limitations: • Criteria based on historical data \rightarrow may not reflect present conditions & not representative of future. • Wind pressure varies as the square of the wind speed; errors increase when speed is converted to wind pressure \rightarrow reliable wind data critical, e.g. 10% error in wind speed results in a 21% error in wind pressure calculation; and Error of 100% (or more) in tie-down uplift force [See i. McCarthy et al, 2009. Wind damage to dockside cranes: recent failures and recommendations. In Lifeline earthquake engineering in a multi-hazard environment, 1-12; ii. Frendo, F., 2016. Gantry crane derailment and collapse induced by wind load. Engineering Failure Analysis 66 479-4881

Building Resilience at Ports – The Necessity for Adaptation in SIDS

- Past global GHG emissions & current trajectory guarantee that warming of atmosphere & oceans, and SLR will continue for decades ('*climate inertia*' → volume of GHGs already emitted).
- Notwithstanding proposed INDCs → no evidence that a binding post-Kyoto agreement will eventuate in Paris in December 2015.
 - Air- and seaport operations face heightened risks. For SIDS, risks are greater → almost total dependence on these facilities for imports and exports.
 - Air- and seaport infrastructure represent major investment → amortized over medium-to-long periods, e.g. minimum of 25-30 years, in some cases as many as 50+ years → fall within the timeframe of current climate change projections.

Examples of Potential Response Strategies for Air & Seaports in SIDS			
Infrastructural /Engineering	Enhance the structural integrity of critical facilities including sea defenses, berths, mooring facilities, runways, parking aprons etc, based on design criteria that reflect changing wind, sea level and wave conditions; recalculation of return periods for major events such as hurricanes and floods, so that more resilient structures can be engineered → Caribbean		
Technological	Invest in more climate-resilient technologies and equipment in expansion & upgrade programmes, e.g. solar photovoltaics to generate electricity more efficiently for both operations and administration, e.g. Airport at Oranjestad, Aruba; 451-kW PV system at St. Thomas Airport, USVI		
Planning & Development	Internal capacity building and re-training that recognizes the magnitude and implications of the threat; building of <i>redundancy</i> into critical operations, wherever feasible; off-site warehousing and storage in less vulnerable areas, etc.		
Management Systems	Various operational systems need to 'mainstream' climate change considerations into their procedures, e.g. 'shut down' and 'start up' operations; emergency protocols and evacuation; environmental management systems; occupational safety and health protocols, etc.		
Insurance	Some risks cannot be avoided \rightarrow must be insured by third parties; In many Caribbean SIDS \rightarrow collaboration among port management, climate scientists and insurance providers will provide a basis for more reliable quantification of <i>exposure</i> and <i>risks</i> that must be covered.		

