UNCTAD National Workshop Jamaica 30 May – 1 June 2017, Kingston, Jamaica

"Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS"

Applying the thresholds method/approach

The Example of SAINT LUCIA

By

Isavela Monioudi

University of the Aegean, Greece

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.

UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT PROSPERITY FOR ALL

Applying the thresholds method/approach

The example of SAINT LUCIA

Isavela Monioudi

The Example of Saint Lucia								
Identification of the operational thresholds								
<i>Employee ability to work safely outdoors and heat index</i> For example the threshold of heat index equal 115 °F will be exceeded if the temperature is over 92 °F and at the same time humidity is over 75%.								
	(Combinations of temperature and relative humidity						
Humidity								
Heat index								
thresholds	70%	75%	80%	85%	90%	95%	100%	
Heat Index over 39.4 C	32.2 °C	31.4 °C	30.8 °C	30.4 °C	29.9 °C	29.4 °C	28.9 °C	
(103 °F) is "high" risk	(89.9 °F)	(88.5 °F)	(87.5 °F)	(86.8 °F)	(85.8 °F)	(85 °F)	(84 °F)	
Heat Index over 46 C								
(115 °F) is "very high"	34 °C	33.3 °C	32.6 °C	32.1 °C	31.5 °C	31.1 °C	30.4 °C	
risk	(93.2 °F)	(92 °F)	(90.7 °F)	(89.7 °F)	(88.7 °F)	(87.9 °F)	(86.7 °F)	

All combinations of Temperature and Humidity were compared with climate data and it was found that most disruptions are likely to be associated with relative humidity of 80 %.

Identification of the operational thresholds

Aircraft Runway Length Requirements and Temperature

Takeoff length requirements vary by aircraft type, and are available from aircraft manufacturers.

The types of aircrafts that fly into HIA include, inter alia, Airbuses (A300's) Boeings (722 - 738), DC10, DHC 6 -8.

For Boeing aircrafts this information is available at: Source: Boeing, 2013 (http://www.boeing.com/assets/pdf/commercial/airports/acaps/737.pdf).

This manual (Boeing, 2013) provides Takeoff Runway Length Requirements, in a series of charts.

Each chart shows the runway length requirements for a different air temperature starting from the "Standard Day" (STD) temperature of 15 $^{\circ}$ C.

The temperatures that Boeing aircrafts will require a runway longer than the existing runway of HIA were estimated and used as thresholds.

Identification of the operational thresholds

Aircraft Runway Length Requirements and Temperature

Using the charts, takeoff runway length requirements for 4 models of Boeing 737 aircraft under multiple temperature conditions were estimated.

Hewanorra International Airport (HIA) has a runway length of 2,744 m (9,003 ft)

akeojj length requirements by ancrujt type and temperatur	Takeoff l	length	requirements	by	aircraft	type	and	temper	ature
---	-----------	--------	--------------	----	----------	------	-----	--------	-------

		Maximum daily temperature				
	STD*	STD + 15 °C	STD + 22.2 °C	Threshold temperature for		
	15 °C (59 °F)	30 °C (86 °F)	37.2 °C (99 °F)	2,744 runway length of HIA		
Boeing 737-600	2,134 m	2,316 m	3,048 m			
	(7,000 ft)	(7,600 ft)	(10,000 ft)	34.2 °C		
Boeing 737-800/-	2,377 m	2,469 m	3,078 m			
800W/BBJ2	(7,800 ft)	(8,100 ft)	(10,100 ft)	33 °C		
Boeing 737-500	2,469 m	2,652 m				
	(8,100 ft)	(8,700 ft)	n/a	31.2 °C		
Boeing 737-400	2,530 m	2,682 m				
	(8,300 ft)	(8,800 ft)	n/a	31 °C		

Identification of the operational thresholds

Increase of Energy cost and Temperature

Extreme heat can raise energy costs for cooling. According to generic standard $1^{\circ}C$ warming will result to 5% increase in energy costs.

Using historical observed data of monthly scale from the Met office service, mean temperature for the period 1986-2005 was estimated to be 26.8 °C.

If temperature exceeds 27.8°C, 29.8°C and 32.8°C the energy cost will raise by 5%, 15% and 30% respectively.

The Example of Saint Lucia

Identification of the operational thresholds

Other Generic thresholds

Climate Hazard	Sensitivity	Example Threshold	Source
Ports			
Precipitation	Low visibility inhibits crane operation	In Manzanillo, intense rainfall > 20 mm within 24 hours reduces visibility enough to impair operations	IDB, 2015b
		Very heavy rainfall (e.g. >50 mm/day)	IDB, 2015b
Wind Speeds	Ability to berth ships (due to waves)	 Varies by facility. For example, at Kingston Container Terminals (KCT) in Jamaica: Winds ≥ 18 m/s (40.3 mph, 35 knots) force operational shutdown With winds of 12.8-18 m/s (28.8-40.3 mph, 25-35 knots), discretion is applied 	Smith Warner, 2017
Airports			
Wind Speeds	Inability of aircraft to land or take off	Commercial airports: sustained winds of 20 m/s (45 mph, 39 knots) or frequent gusts of 26 m/s (58 mph, 50.4 knots) General Aviation airports: 11.2 m/s (25 mph, 21.7 knots)	ACRP Report 160

Collection of climate data

The database of the Caribbean Community Climate Change Centre (CCCCC) was used as a source, since it provides daily-scale climate data.

Daily-scale climate data for the period 1970 -2099 from the Regional Climate Model (PRECIS) were obtained.

The available projections were based on the A1B scenario which is compatible with the RCP 6.0.

The Example of Saint Lucia

Assess current exposure

Historical data in a daily scale, from the CCCCC database were used.

The data were compared with thresholds and the number of days that the operational thresholds have been exceeded historically, was estimated.

The Example of Saint Lucia Assess future exposure (temperature, precipitation, and other climate hazards) • Compare the projected climate data with the operational thresholds. • Estimate the number of times the operational thresholds will be exceeded in the future

The Example of Saint Lucia							
Determir	ne exposure to	Assess future exposure o temperature, precipitation, and Days of disruptions for the airports.	other cli	mate haz	ards		
	1	Airports	1				
			Disruptio	ns (average da	ays/year)		
Climate Stressor	Sensitivity	Threshold	2000-2019	2040- 2059	2080 - 2099		
	Employee ability	Heat Index* over 30.8 °C (87.5 °F) with relative humidity 80% is "high" risk	2.05 (41 days)	13.2 (264 days)	53.7 (1073 days)		
	outdoors	Heat Index* over 32.9 °C (90.7 °F) with relative humidity 80% is "very high" risk	0	1.05 (21 days)	11.8 (236 days)		
		Boeing 737-600 aircraft would not be able to take off from HIA if the temperature exceeds 34.2°C without reducing aircraft loads	0	0	2.2 (44 days)		
Extreme Heat	Aircraft take-off	Boeing 737-800/-800W/BBJ2 aircraft would not be able to take off from HIA if the temperature exceeds 33°C without reducing aircraft loads	0	0.7 (14 days)	12.2 (244 days)		
	requirements	Boeing 737-500 aircraft would not be able to take off from HIA if the temperature exceeds 31.2°C without reducing aircraft loads	1.1 (22 days)	12.1 (242 days)	67.5 (1350 days)		
		Boeing 737-400 aircraft would not be able to take off from HIA if the temperature exceeds 31°C without reducing aircraft loads	1.7 (34 days)	12.25 (245 days)	67.9 (1357 days)		
	Inability of aircraft	Commercial airports: sustained winds of 20 m/s	0	0	0		
Wind Speeds	to land or take off	General Aviation airports: 11.2 m/s	0.2 (4 days)	0.1 (2 days)	0.05 (1 days)		

Assess future exposure

Determine exposure to temperature, precipitation, and other climate hazards

Days of disruptions for the sea ports.

Ports						
			Disruptions (average days/year)			
Climate Stressor	Sensitivity	Threshold	2000-2019	2040- 2059	2080 - 209	
Extreme Heat Ener,		1°C warming = 5% increase in energy costs if temperature exceeds 27.8°C (mean temperature for the period 1986-2005: 26.8 °C)	N/A	221 (4419 days)	351.5 (7029 day	
	Energy costs	3°C warming = 15% increase in energy costs if temperature exceeds 29.8°C (mean temperature for the period 1986-2005: 26.8 °C)	N/A	47.6 (951 days)	179 (3581 day	
		6°C warming = 30% increase in energy costs if temperature exceeds 32.8°C (mean temperature for the period 1986-2005: 26.8 °C)	N/A	1 (20 days)	15.4 (308 days	
Precipitation ir	Low visibility inhibits crane operation Very	Intense rainfall (e.g., > 20 mm/day)	43.5 (870 days)	45.5 (910 days)	46.7 (934 days	
		Very heavy rainfall (e.g. >50 mm/day)	0.9 (18 days)	0.8 (16 days)	0.8 (16 days)	
Wind Speed	Ability to berth	Winds ≥18 m/s (40.3 mph, 35 knots) force Ability to berth operational shutdown		0	0	0
	ships (due to waves)	With winds of 12.8-18 m/s (28.8-40.3 mph, 25-35 knots), discretion is applied	0	0.05 (1 days)	0	

The Example of Saint Lucia

Assess future exposure

Determine exposure to sea level rise and storm surge

In Saint Lucia, coastal flooding is primarily caused by tropical storms and hurricanes.

- ESLs were estimated for Saint Lucia (and Jamaica). In order to assess the impacts of a Caribbean hurricane, the effect of a hurricane with the characteristics of Thomas were superimposed on the ESL projections.
- Flood/inundation was assessed (This work is made by the collaborating institute Joint Research Centre (JRC-EC), using dynamic inundation modeling (LISFLOOD-ACC)

Assess future exposure Determine exposure to sea level rise and storm surge

Extreme Sea levels from JRC:

ESL are driven by the combined effect of MSL, tides (η_{tide}) and water level fluctuations due to waves and storm surges (η_{w-ss}). As a result, ESL can be defined as (Vousdoukas et al., 2017):

ESL = MSL +
$$\eta_{tide}$$
 + η_{w-ss}

The climate extremes contribution $\eta_{\rm w-ss}$ from waves and storm surge can be estimated according to the following equation:

$$\eta_{w-ss} = SSL + 0.2 \times H_s$$

where SSL is the storm surge level, H_s is the significant wave height and $0.2 \times H_s$ is the wave set-up.

Assess future exposure Determine exposure to sea level rise and storm surge and hurricane

Inundation maps for a Caribbean hurricane (Thomas) superimposed on a 100-year ESL (RCP 4.5, 2050) (ESL = 1.66 m)

Assess future exposure Determine exposure to sea level rise and storm surge

and hurricane

Table summarizing the impacts to major transportation assets due to coastal flooding. 0: no impacts, 1: Low impact, 2: medium impact, 3: high impact.

	ESL plus	Graded impacts to the Major Assets				
	Hurricane			Port Vieux	Port	
Scenarios	(m)	HIA	GFL IA	Fort	Castries	
RCP 4.5 - 2050 (RP=1/10)	1.53	1	0	3	3	
RCP 4.5 - 2050 (RP=1/50)	1.62	1	0	3	3	
RCP 4.5 - 2050 (RP=1/100)	1.66	1	1	3	3	
RCP 8.5 - 2050 (RP=1/10)	1.56	1	0	3	3	
RCP 8.5 - 2050 (RP=1/50)	1.65	1	1	3	3	
RCP 8.5 - 2050 (RP=1/100)	1.68	1	1	3	3	
RCP 4.5 - 2100 (RP=1/10)	1.87	1	1	3	3	
RCP 4.5 - 2100 (RP=1/50)	1.96	2	2	3	3	
RCP 4.5 - 2100 (RP=1/100)	1.99	2	2	3	3	
RCP 8.5 - 2100 (RP=1/10)	2.12	2	2	3	3	
RCP 8.5 - 2100 (RP=1/50)	2.20	3	2	3	3	
RCP 8.5 - 2100 (RP=1/100)	2.23	3	2	3	3	

The Example of Jamaica

Assess future exposure Determine exposure to sea level rise and storm surge and hurricane

> Donald Sangster International Airport (Runway elevation = 1.37 m)

Inundation maps for a Caribbean hurricane (Thomas) superimposed on a 100-year ESL (a) RCP 4.5, 2050 (ESL = 1.47 m) and (b) RCP 8.5, 2100 (ESL = 2.10 m)

Some thoughts

Using the operational threshold method the historical and future disruptions can be determined

Through the inundation mapping the locations which are most likely to be inundated can be determined

The results of the application in Saint Lucia can be improved if the following information is available:

- Specific operational thresholds for the specific facilities
- o Historical (observed) data in daily scale
- o DEM or LIDAR data of high resolution