UNCTAD Regional Workshop 5 – 7 December 2017, Bridgetown, Barbados

"Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in the Caribbean"

Case Study Saint Lucia: approach, methods and key findings

By

Isavela Monioudi

University of the Aegean, Greece

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.

	Synopsis			
1.	Introduction 1.1 SIDS vulnerability to CV & C 1.2 CV & C impacts on transport/tourism			
2.	Saint Lucia: Country Profile			
3.	Assessment of CV&C impacts on transport: Methodology			
4.	 Application of the methodology (SAINT LUCIA) 3.1 Critical assets 3.2 Direct impacts/Future disruptions 3.3 Indirect impacts 			
5.	Conclusions			
6.	Further work			
7.	Potential technical adaptations responses			

Saint Lucia: Country profile
Current climate and climatic hazards
 Mean daily temperatures: 23.3°C -30.9°C. Increasing trend of mean annual temperature by about 0.16 °C/decade, together with the frequency of warm days and nights
 Rainfall is about 12.6 cm at the coast and up to 34.2 cm in the interior. Flash floods and landslides are historical hazards;
 MSLR, based on tidal records from Fort-de-France, Martinique, shows a rising trend since 1976; this has accelerated over 2005-2016 to 7 mm/year
 The island has also been hit by tropical storms/hurricanes that caused human losses and significant damages. Hurricane Allen (1980) and hurricane Tomas caused damages equivalent to 60 % and 43.4 % of GDP respectively

Application of the methodology (SAINT LUCIA) Future disruptions - Direct impacts **Operational thresholds method** Identifying the operational thresholds Employee ability to work safely outdoors - heat index (a function of i. temperature and relative humidity) (airports and seaports) ii. Take off runway length requirement is a function of air temperature (airports) Energy cost and Temperature (seaports) iii. Crane operation and precipitation (seaports) iv. Collection of Climate data i. Raw daily climate model data from the database of the Caribbean Community Climate Change Centre (CCCCC) Estimation of days of disruption Trough the comparison of the operational thresholds with the climate data, the days that these thresholds would be exceeded were estimated

	Days of c	lisruptions for airports and seap	orts in	Saint L	ucia			
				Disrupti	ons (avera	ge days/y	/ear)	
Climate Stressor	Sensitivity	Threshold	1986- 2005	2006- 2030	2030	2031- 2055	2056- 2080	2081- 2100
Extreme Heat	Employee ability to work safely outdoors in	Heat Index (NOAA) over 30.8 °C (87.5 °F) with relative humidity 80% is "high" risk	1.25	1.96	2.00	11.86	29.13	55.33
airports	airports and seaports	Heat Index (NOAA) over 32.9 °C (90.7 °F) with relative humidity 80 is "very high" risk	0.00	0.00	0.00	0.59	2.42	9.06
	Aircraft take-off length requirements	Boeing 737-500 aircraft would not be able to take off from HIA if the temperature exceeds 31.2°C	0.55	0.96	0.00	10.64	31.38	69.72
	Energy costs in seaports	0.8°C = 4% increase if temperature exceeds 27.6°C (1986-2005 average: 26.8 °C)	80.55	114.32	168.00	225.50	322.13	355.72
		1.3°C warming = 6.5% increase if temperature exceeds 28.1°C	49.05	71.76	113.00	161.59	279.58	343.61
		3°C warming = 15% increase if temperature exceeds 29.8°C	5.90	9.72	18.00	40.32	98.54	182.78
Precipitation	Inhibits crane operation in	Intense rainfall (e.g., > 20 mm/day)	48.20	44.60	51.00	45.55	46.88	48.00
	seaports	Very heavy rainfall (e.g. >50 mm/day)	0.45	0.72	1.00	1.05	0.54	0.83

Application of the methodology (SAINT LUCIA)

Future disruptions – Direct impacts

Coastal flooding

Table summarizing the impacts on major transportation assets due to coastal flooding. 0: no impacts, 1: Low impact, 2: medium impact, 3: high impact.

	ESL plus	Gr	aded impacts t	o the Major A	Assets
Scenarios	Hurricane (m)	НІА	GCIA	VESP	CSP
RCP 4.5 – 2050 (RP=1/10)	1 38	1	0	3	3
RCP 4.5 – 2050 (RP=1/50)	1.47	1	1	3	3
RCP 4.5 - 2050 (RP=1/100)	1.51	1	1	3	3
RCP 8.5 - 2050 (RP=1/10)	1.44	1	0	3	3
RCP 8.5 - 2050 (RP=1/50)	1.53	1	1	3	3
RCP 8.5 - 2050 (RP=1/100)	1.57	1	1	3	3
RCP 4.5 - 2100 (RP=1/10)	1.69	1	1	3	3
RCP 4.5 - 2100 (RP=1/50)	1.78	2	2	3	3
RCP 4.5 - 2100 (RP=1/100)	1.82	2	2	3	3
RCP 8.5 - 2100 (RP=1/10)	2.01	2	2	3	3
RCP 8.5 - 2100 (RP=1/50)	2.10	3	2	3	3
RCP 8.5 - 2100 (RP=1/100)	2.13	3	2	3	3

	Conclusions
~	There is significant and increasing marine inundation risk to the critical assets, with the seaports being the most vulnerable
~	Severe impacts are projected even under the AOSIS advocated temperature increase cap of 1.5 $^{\circ}\mathrm{C}$
~	It appears that most operational problems will be due to rising temperatures, with rainfall and wind effects projected to have minor impacts. However, as the climate projections from the CCCCC database do not include the effects of tropical storms/hurricanes, these results may be considered conservative
~	Under increasing beach erosion and flooding, the long-term recreational value of the Saint Lucia beaches may fall considerably
~	In Saint Lucia, connectivity of the major transportation assets to the major tourist destinations of the island is under increased risk by the large density of landslides

Further work

This work represents a first evaluation of the vulnerabilities of critical transportation assets of Saint Lucia to climatic change, which could be fine-tuned if the following are available.

- o facility-specific operational sensitivities that cannot be captured by generic thresholds
- a DEM of good quality and of high resolution, required for more accurate inundation projections

Coastal transportation assets could be directly and indirectly impacted by additional hazards and their combinations, making multi-hazard assessments necessary for effective adaptation planning.

Potential technical adaptations responses

The methodological framework for the implementation of adaptation options may include the following steps:

- Collation/collection of detailed information (e.g. historical disruptions, climate data, facility specific operational thresholds, good quality DEM etc.). Installation of water level recorders at the facilities (or their vicinity).
- Detailed 2-D modeling for integrated combined hazards from marine and flash flooding (multi-hazard risk assessments)
- Design/testing (using simulations) of appropriate technical adaptation responses under climate change, including cost benefit analyses
- Study of socio-economic parameters (including a review of pertinent national policies and regulation)
- Planning/implementation of technical responses; monitoring of the technical projects after their completion

Potential technical adaptations responses				
Action Area	Adaptation Action			
Engineering	Enhance the structural integrity and efficiency of critical facility components			
	Future procurement of mechanical components for the assets against future operating environment requirements			
	Assess and develop new design standards for hydraulic structures			
	Ongoing hydrographical monitoring			
	Construction of storm retention basins for flash flooding			
Technology	Investment in more climate-resilient technologies and equipment in planned expansion and upgrade programmes			
	Refrigerated storage specifications should be upgraded and seek less energy intensive alternatives			
	Automation of logistics procedures			
Planning, design and development	Internal capacity-building and retraining building of redundancy into critical operations			
	proactive infrastructure and management plan			
	Re-examine land use planning in flood prone areas			
Management	operational systems need to mainstream climate-change considerations			
Insurance	Some risks cannot be avoided; therefore, they must be insured by third parties			

Date	Name	Wind (mph)	Cat.	Recorded damage
07/1960	ABBY (1)	63	TS	Damage to roads and bridges; 6 deaths; US\$ 435,000 damage
09/1980	ALLEN (2)	130*	H4	Landslides (70) damaging road network and tourism industry; 6 deaths; US\$ 87 million total damages
09/1994	DEBBY ⁽³⁾	63	TS	Floods and landslides blocked roads and destroyed/damaged 10 bridges; HIA covered by 5 cm of silt; 4 deaths, 750 people affected US\$ 103 million total damage
1999	LENNY ⁽⁴⁾	155*	H4	Storm surge/waves had major coastal impacts, including beach erosion at the NW coast; roads, coastal defences and walkway washed away; \$6.6 million infrastructure damages
08/2007	DEAN ⁽⁵⁾	104	H2	Damages (US\$ 370,400) to CSP and the rock armouring at the end o the GCIA runway; 1 death; US\$ 18.8 total damages
10/2010	TOMAS ⁽⁶⁾	98	H2	Storm surge and waves (1 in 15-year event) had relatively small direct damages; roads/bridges severely impacted, mostly from landslides and floods; HIA and GCIA were closed; HIA runwar flooded and silted; total impact on transport infrastructure US\$ 52.8 million; 7 deaths, 5,952 people severely affected; US\$ 336 million total damage
12/2013	CHRISTMAS EVE TROUGH (7)		Π	Severe flash floods and landslides across the island; HIA closed for 2 days due to river flooding of terminal and runway; Operations a GCIA suspended for few hours; severe damages to main connecting highway; transport infrastructure sustained most damages (72 % ou of US\$ 99.9 million total damage); 6 deaths; 19,984 people directly impacted
09/2016	MATTHEW (8)	60	TS	Landslides and floods; several roads blocked; both GCIA and HIA airports closed during the storm