UNCTAD National Workshop Jamaica

30 May - 1 June 2017, Kingston, Jamaica

"Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS"

Training

Gathering and applying climate information for decision-making

By

Cassandra Bhat

ICF, United States

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received.

The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.

Training

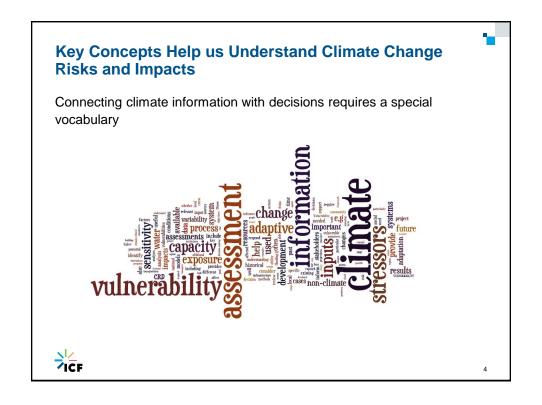
Gathering and applying climate information for decision-making

Climate Change Impacts on Coastal Transport Infrastructure in the Caribbean: Enhancing the Adaptive Capacity of SIDS

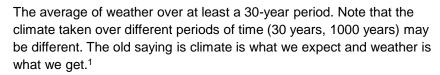
June 1, 2017

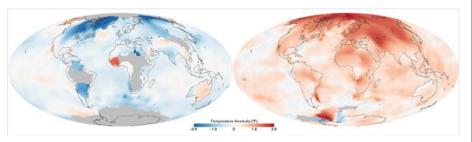
United Nations Conference on Trade and Development

National Workshop - Jamaica


Cassandra Bhat

Objectives


- Learn the fundamentals about climate scenarios, models, and data
- Understand sources of climate data for the Caribbean



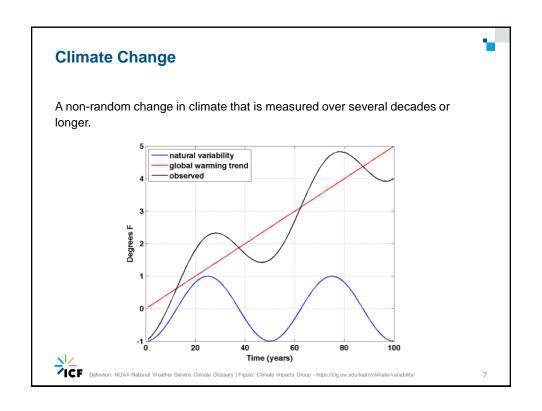
Climate

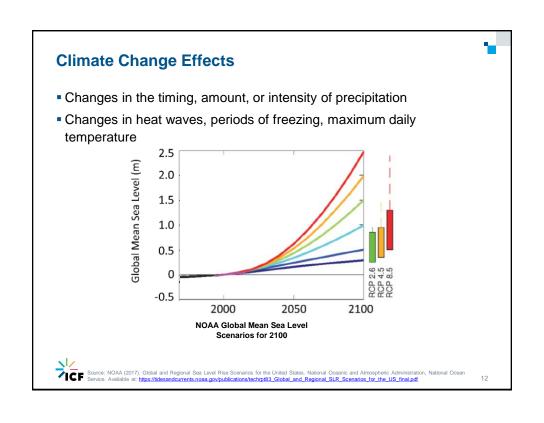
5

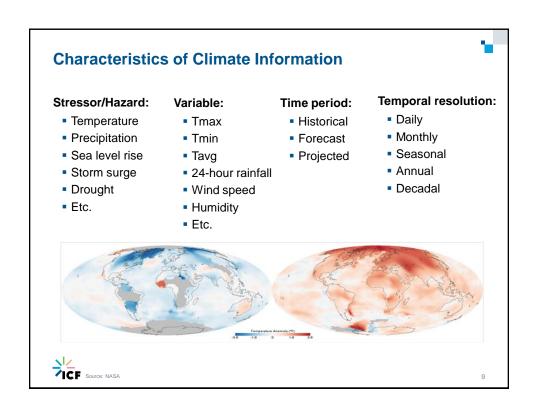
Extreme Events

Weather or climate conditions near the upper or lower ends of the range of observed values

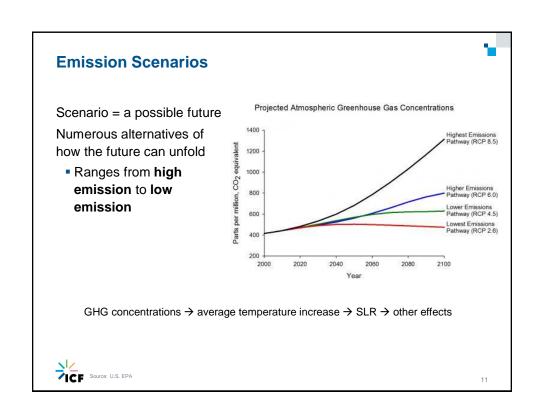
 Sometimes impacts on society and ecosystems become severe when climate conditions pass certain levels, called thresholds.

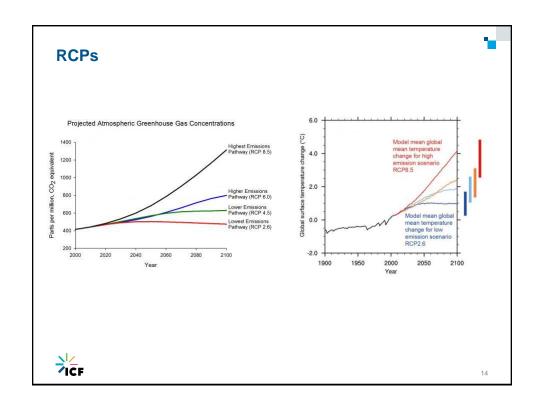



Extreme Temperatures



Extreme Rainfall and Flooding





Dimensions of Climate Projections Emission scenarios Climate models Spatial resolution

Scenario Name	Description	Concentrations (ppm CO₂ equiv.) by 2100	Change in CO ₂ compare	Global Surface Temp. Change	
			2050	2100	by 2100*
RCP 2.6	Emissions reduced substantially from current pathway.	430-480	-72 to -41%	-118 to -78%	0.5–3.0 °F (0.3–1.7 °C)
RCP 4.5	Emissions reduced sufficiently so that total radiative forcing is stabilized by 2100.	580-720	-38 to 24%	-134 to -21%	2.0–4.7 °F (1.1–2.6 °C)
RCP 6.0	Emissions reduced sufficiently so that total radiative forcing is stabilized by 2100.	720-1,000	18 to 54%	-7% to 72%	2.5–5.6 °F (1.4–3.1 °C)
RCP 8.5	High emissions continue through 2100. Most representative RCP of current emissions track.	>1,000	52 to 95%	74 to 178%	4.7–8.6 °F (2.6–4.8 °C)

П	PCC Fourth	Assessment	Report	IPCC Fifth Assessment Report						
Scen ario Nam e	Description	Global Surface Temp. Change by 2100		Scenari o Name	Description	CO ₂ equiv. ppm by 2100	Global Surface Temp. Change by 2100	Global Mean Sea Level Rise by 2100		
B1	Low emissions.	0.54-1.62 °F (0.3-0.9 °C)	0.59-1.25 ft (0.18-0.38 m)	RCP2.6	Substantial and sustained emissions reductions	475	0.5-3.0 °F (0.3-1.7 °C)	0.85-1.8 ft (0.26- 0.55m)		
A1B	Medium-High 3.06-7.92 °F emissions. (1.7-4.4 °C)	0.69-1.57 ft (0.21-0.48 m)	RCP4.5	Stabilization	630	2.0-4.7 °F (1.1-2.6 °C)	1.0-2.1 ft (0.32- 0.63m)			
A2	Medium-High emissions.	3.6-9.72 °F (2.0-5.4 °C)	0.75-1.67 ft (0.23-0.51 m)	RCP6.0	Stabilization	800	2.5-5.6 °F (1.4-3.1 °C)	1.1-2.1 ft (0.33- 0.63m)		
	emissions. (.	(2.0 0.4 0)	(0.20 0.01 11)	RCP8.5	High emissions continue	1313	4.7-8.6 °F (2.6-4.8 °C)	1.5-2.7 ft (0.45- 0.82m)		

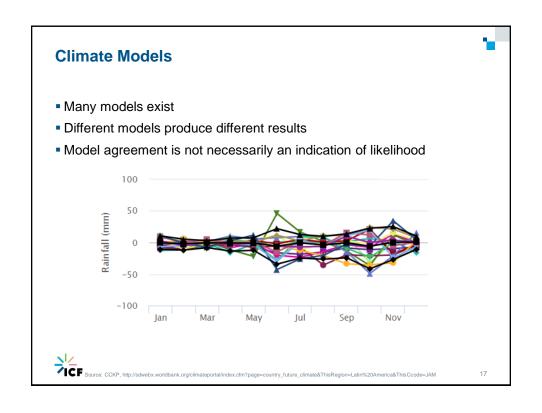
Uncertainties in Emission Scenarios

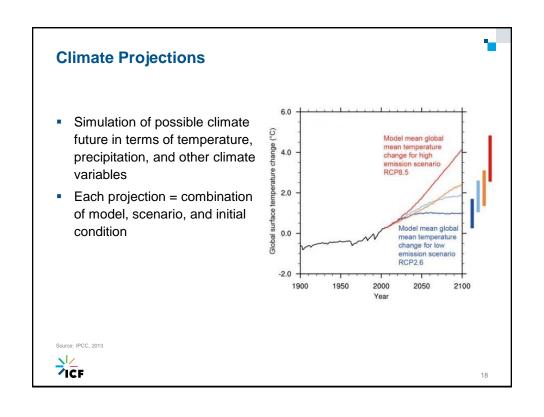
Uncertainties about the future

- Socio-economic development
- Technology
- Energy use
- Policies for GHG mitigation

These uncertainties increase as they are projected further out in the future

15


Climate Models


- Mathematical representations of climate system and interacting processes
- Can reproduce key features found in the climate of the past century
- Run emission scenarios and produce projections
- Can be done on different timescales and different geographic areas
- Global climate models referred to as "GCMs"

Model components (UCAR)

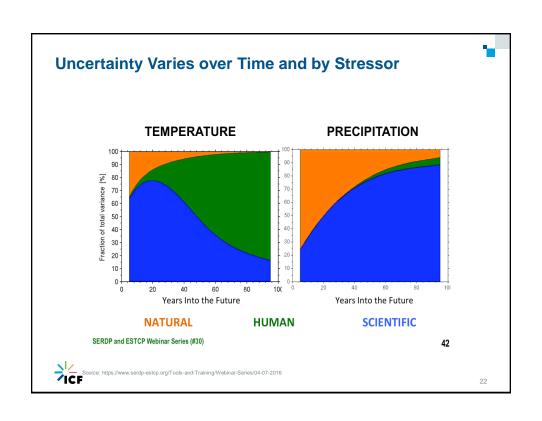
Downscaling

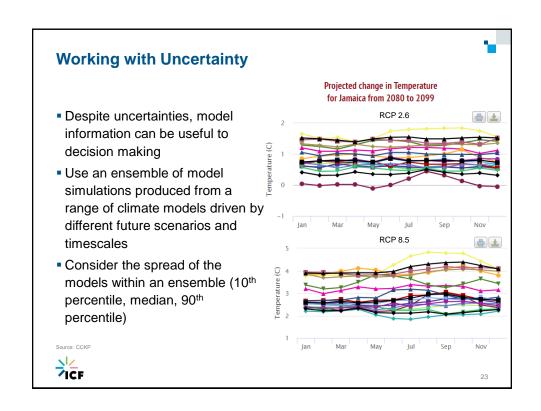
- Global climate models (GCM) spatial resolution ranges from about 50 to 300 km
- Resolution may be too coarse for regional decision-making
- Downscaling = take information known at large scales to make predictions at local scales

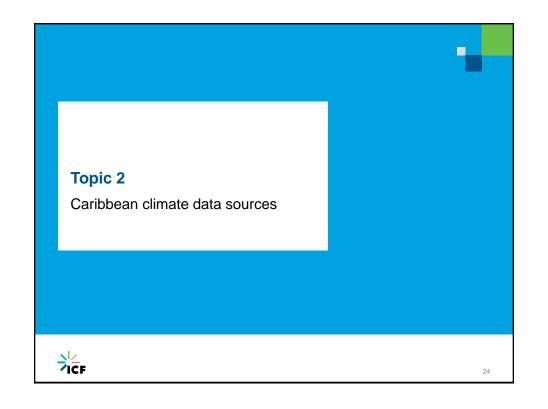
Types of Downscaling

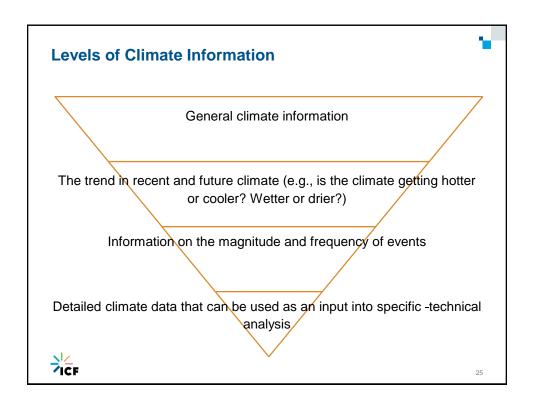
- Statistical applies the statistical relationship between local weather variables (e.g., surface rainfall) and larger-scale climate variables (e.g., atmospheric pressure) to adjust GCM outputs to the local scale
- Dynamical uses GCM outputs to feed a higher-resolution regional climate model (RCM)

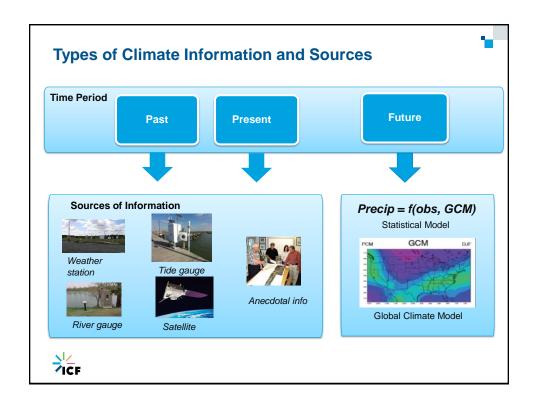
Dynamically downscaled data available for the Caribbean at 25 km and 50 km resolution


Uncertainties in Models


"All models are wrong, but some are useful."


Sources of uncertainty:


- Natural uncertainty climate variability resulting from natural processes in the climate system
- Human uncertainty Future emissions of greenhouse gases resulting from human activity (this becomes a larger component of uncertainty on time scales of 50 years or more)
- Scientific uncertainty an incomplete understanding of and ability for computer systems to model Earth's complex processes (clouds, particles, ice, natural variability, etc.)



Climate Data Sources for Jamaica - Historical Data

- Temperature, precipitation, and wind
- Met Service
- State of Jamaican Climate Report
- Climatic Research Unit

27

Climate Data Sources for Jamaica - Historical Data

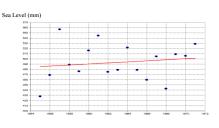
- Temperature, precipitation, and wind
- Met Service
- State of Jamaican Climate Report
- Climatic Research Unit
- Sea Level/Tides
- Met Service
- Permanent Service for Mean Sea Level

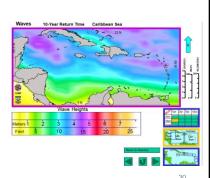
6/9/2017 28

Climate Data Sources for Jamaica - Historical Data

٧

- Temperature, precipitation, and wind
 - Met Service
 - State of Jamaican Climate Report
- Climatic Research Unit
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level
 - State of Jamaican Climate Report




Figure 4.7.1: Mean annual sea levels at Port Royal measured between 1955 and 197. Redrawn from Horsfield (1973). Linear trend inserted.

6/9/2017 29

Climate Data Sources for Jamaica – Historical Data

- Temperature, precipitation, and wind
- Met Service
- State of Jamaican Climate Report
- Climatic Research Unit
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level
 - State of Jamaican Climate Report
- Hurricanes
- Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods

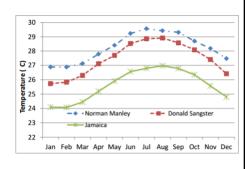
Climate Data Sources for Jamaica - Historical Data

- Temperature, precipitation, and wind
 - Met Service
 - State of Jamaican Climate Report
- Climatic Research Unit
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level
 - State of Jamaican Climate Report
- Hurricanes
 - Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods
 - NOAA National Hurricane Center <u>Historical</u> <u>Hurricane Tracks</u>

https://coast.poaa.gov/hurricanes/2redirect_201.com

31

Climate Data Sources for Jamaica – Historical Data


- Temperature, precipitation, and wind
 - Met Service
- State of Jamaican Climate Report
- Climatic Research Unit
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level
 - State of Jamaican Climate Report
- Hurricanes
- Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods
- NOAA National Hurricane Center <u>Historical</u> Hurricane Tracks
- Caribbean Hurricane Network

Climate Data Sources for Jamaica – Projected Data

- Temperature, precipitation, and wind
 - State of Jamaican Climate Report

33

Climate Data Sources for Jamaica – Projected Data

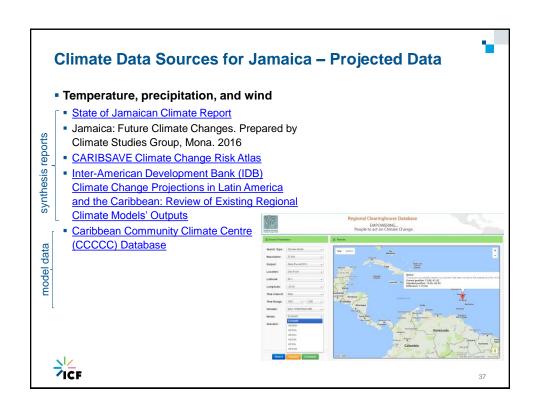
- Temperature, precipitation, and wind
- State of Jamaican Climate Report
- Jamaica: Future Climate Changes. Prepared by Climate Studies Group, Mona. 2016

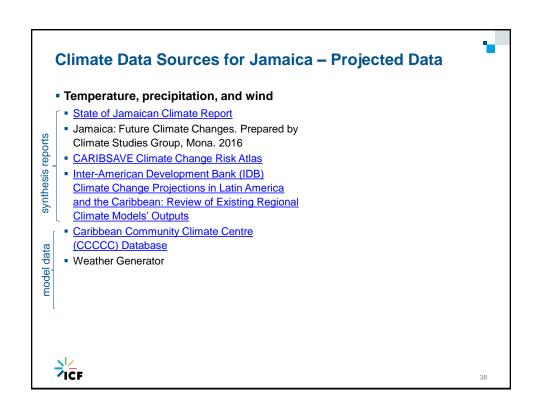
Climate Data Sources for Jamaica - Projected Data

- Temperature, precipitation, and wind
- State of Jamaican Climate Report
- Jamaica: Future Climate Changes. Prepared by Climate Studies Group, Mona. 2016
- CARIBSAVE Climate Change Risk Atlas

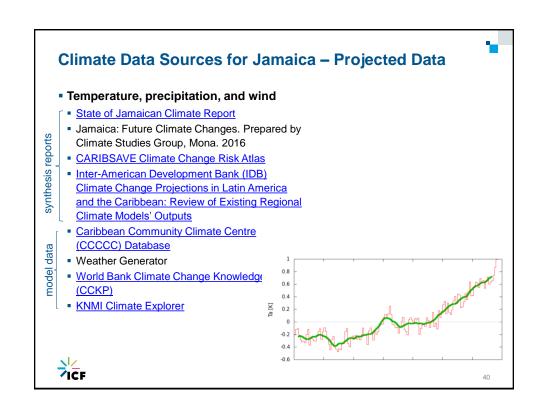
Table 3.3.1: Observed and GCM Projected Changes in Precipitation for Saint Lucia

Saint Lucia: Country Scale Changes in Precipitation												
	Observed Mean	Observed Trend 1960- 2006	d	Projected changes by the 2020s			Projected changes by the 2050s			Projected changes by the 2080s		
	1970-99			Min	Media	Мах	Min	Media	n Max	Min	Median	Max
	(mm per month)	(change mm p decad	er	Change in mm per month		Change in mm per month			Change in mm per month			
			A2	-15	-2	4	-19	-4	4	-37	-16	6
Annual	179.2	0.1	A1B	-10	-2	9	-18	-6	6	-29	-8	5
			B1	-11	-3	13	-18	-2	3	-21	-4	7
			A2	-3	0	11	-8	-1	1	-10	-4	3
DJF	125.6	1.9	A1B	-6	0	4	-8	-1	6	-12	-3	3
			B1	-7	-1	14	-9	-1	7	-8	0	6
			A2	-15	0	8	-20	0	17	-27	-1	9
MAM	105.3	-0.9	A1B	-8	1	8	-20	-1	8	-26	0	8
			B1	-10	0	10	-16	0	2	-17	0	5
			A2	-32	-7	10	-36	-18	12	-72	-27	14
JJA	219.3	-6.7	A1B	-25	-7	6	-34	-19	14	-45	-19	4
			B1	-26	-10	31	-36	-12	5	-40	-15	21
			A2	-29	-4	17	-40	-4	8	-57	-12	8
SON	265.4	5.7	A1B	-30	-2	23	-35	-7	21	-59	-11	15
			B1	-24	-2	12	-39	-1	16	-45	-6	9


35


Climate Data Sources for Jamaica – Projected Data

- Temperature, precipitation, and wind
- State of Jamaican Climate Report
- Jamaica: Future Climate Changes. Prepared by Climate Studies Group, Mona. 2016
- CARIBSAVE Climate Change Risk Atlas
- Inter-American Development Bank (IDB)
 Climate Change Projections in Latin America
 and the Caribbean: Review of Existing Regional
 Climate Models' Outputs



Climate Data Sources for Jamaica - Projected Data Temperature, precipitation, and wind State of Jamaican Climate Report Jamaica: Future Climate Changes. Prepared by synthesis reports Climate Studies Group, Mona. 2016 CARIBSAVE Climate Change Risk Atlas Inter-American Development Bank (IDB) Climate Change Projections in Latin America and the Caribbean: Review of Existing Regional Climate Models' Outputs Caribbean Community Climate Centre (CCCCC) Database model data Weather Generator World Bank Climate Change Knowledge Portal (CCKP) →ICF

Climate Data Sources for Jamaica - Projected Data

Sea Level/Tides

 Large scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) (localized spatial modeling)

41

Climate Data Sources for Jamaica - Projected Data

Sea Level/Tides

- Large scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) (localized spatial modeling)
- HadGEM2-ES modeling (localized scenario modeling)

Climate Data Sources for Jamaica - Projected Data Sea Level/Tides Large scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) (localized spatial modeling) HadGEM2-ES modeling (localized scenario 2.5 modeling) Global Mean Sea Level (m) NOAA 2017, Technical Report on Global and 2.0 Regional Sea Level Rise Scenarios for the 1.5 United States (scenarios) 1.0 0.5 0 -0.5 2000 2050 2100 Table 4. Probability of exceeding GMSL (median value) scenarios in 2100 based upon Kopp et al. (2014). GMSL rise Scenario RCP2.6 RCP4.5 RCP8.5 100% Low (0.3 m) 98% Intermediate-Low (0.5 m) 49% 73% 96% Intermediate (1.0 m) 17% Intermediate-High (1.5 m) 0.4% 0.5% 1.3% High (2.0 m) 0.1% 0.1%

What if the information you need is unavailable?

43

Data gaps can be filled by:

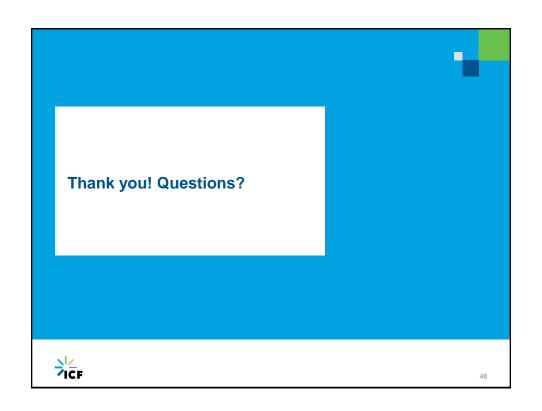
- Interpolation of station data
- Reanalysis, satellite data
- Indigenous knowledge
- Non-traditional data sources, such as ship or aircraft data
- Combining data from different sources
- Investing in additional observation stations
- Fostering collaboration between information providers and users

Extreme (2.5 m)

Build relationships and trust with information providers

- Build relationships with partner(s) who are well-equipped to collect and analyze climate data
 - Universities, 5Cs, Met Office, consulting firms
- Work together to identify and overcome data gaps, refine data needs
- As you become familiar with the climate information it becomes more useful, and your needs more apparent. This may involve some capacity building and active partnerships.

45


Summary: Best practices in identifying information

- Consider how climate has impacted the system in the past, recognizing that it is not a direct parallel
- Account for climate variability, both natural and human-caused, and potential climate extremes.
- Recognize uncertainty in future outcomes and consider a full range of climate scenarios.
- Ask for help from partners and experts if you cannot find or understand the information you need.

Name	URL	Variables	Time Period	Temporal Resolution	Models	Scenario(s)	Spatial Resolution
Caribbean Community Climate Change Centre (CCCCC) Regional Clearinghouse – RCM	http://clearinghous e.caribbeanclimat e.bz/?db_type=Cli mate%20Model&c ountry=&collection =V501&s=§or =&topic=	Available soil moisture content in root zone, convective rainfall rate, evaporation rate from canopy, large scale rainfall rate, max temperature, minimum temperature, humidity, etc.	1961- 2100	Daily	ECHAM5	A1B	25 km
CCCCC Regional Clearinghouse – GCM	http://clearinghous e_caribbeanclimat e_bz/?db_type=Cli mate%20Model&c ountry=&collection =V501&s=§or =&topic=	Change in annual mean temperature, Change in total precipitation rate (mm/day), Change in mean surface temperature, Change in relative humidity, Change in wind speed at 10 m (m/s)	1990- 2100 (ECHA M), 2010- 2069 (Had)	Daily	ECHAM4, HadAM3P	A2, B2	50 km
CARIBSAVE Climate Change Risk Atlas	http://www.caribbe anclimate.bz/close d-projects/2009- 2011-the- caribsave-climate- change-risk-atlas- ccra.html	Mean temperature, total precipitation, wind speed, relative humidity, sunshine hours, sea surface temperatures, frequency of hot nights, frequency of cold days, frequency of cold nights, frequency of cold nights, frequency of cold nights, greatinge of rainfall falling in heavy events, maximum 1-day rainfall, maximum 5-day rainfall	2020s, 2050s, 2080s (rel. to 1970- 1999)	Seasonal and Annual	Ensemble of 15 General Circulation Models (GCMs) and PRECIS Regional Climate Model (RCM) driven by ECHAM4 and HadCM3	GCMs: A2, A1B, B1 RCM: A2	GCMs: 2.5 degrees RCM: unknown

