UNCTAD Regional Workshop

5 – 7 December 2017, Bridgetown, Barbados

"Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in the Caribbean"

Gathering and applying climate information for decision-making

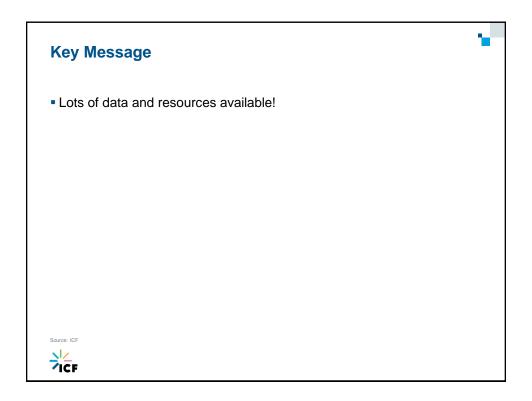

By

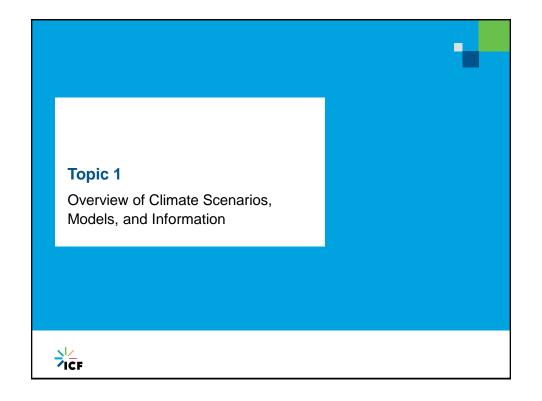
Cassandra Bhat

ICF, Miami

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received.

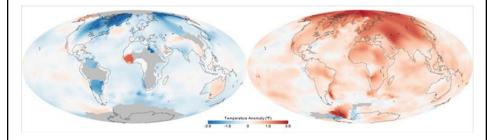
The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.




Objectives

- Learn the fundamentals about climate scenarios, models, and data
- Understand sources of climate data for the Caribbean

Key Concepts Help us Understand Climate Change Risks and Impacts


Connecting climate information with decisions requires a special vocabulary

Climate

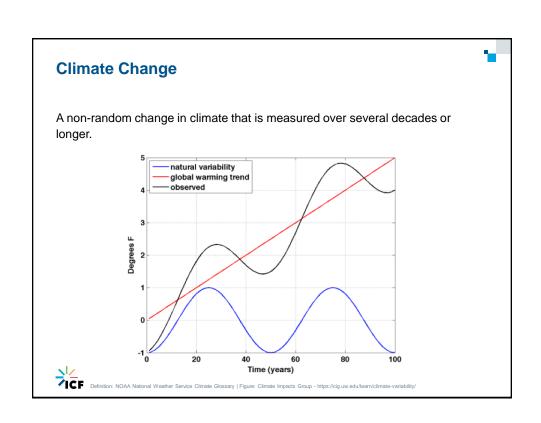
The average of weather over at least a 30-year period. Note that the climate taken over different periods of time (30 years, 1000 years) may be different.

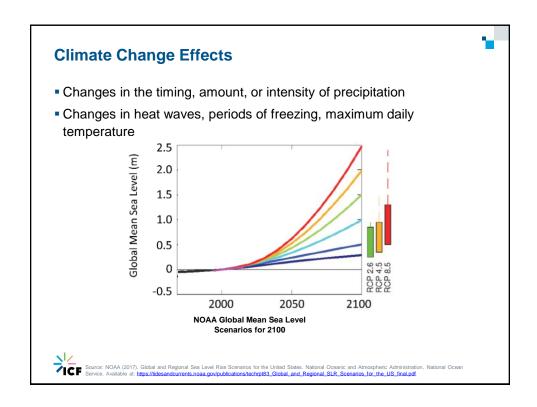
Climate is what we expect and weather is what we get.1

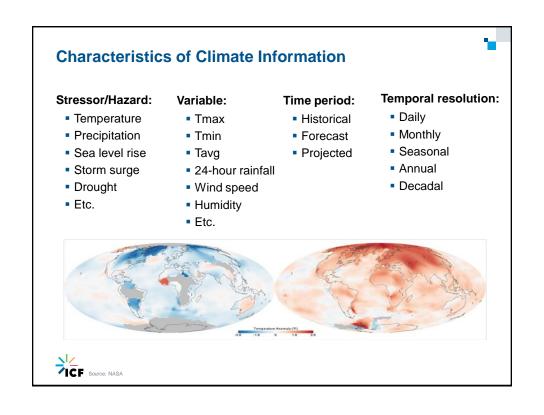
Extreme Events

Weather or climate conditions near the upper or lower ends of the range of observed values

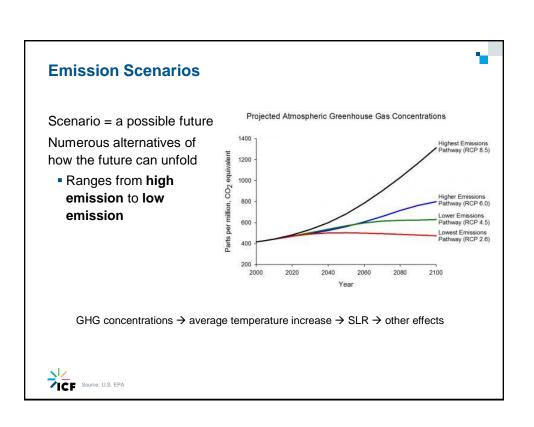
 Sometimes impacts on society and ecosystems become severe when climate conditions pass certain levels, called thresholds.



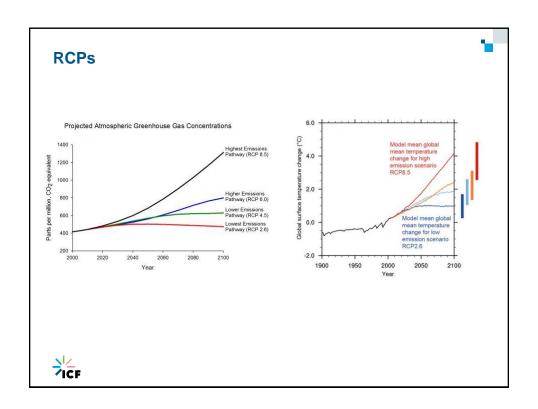




Extreme Rainfall and Flooding



Dimensions of Climate Projections

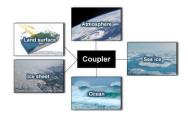

- Emission scenarios
- Climate models
- Spatial resolution

Scenario	Description	Concentrations (ppm CO₂ equiv.) by 2100	Change in CO ₂ compare	Global Surface Temp. Change	
Name			2050	2100	by 2100*
RCP 2.6	Emissions reduced substantially from current pathway.	430-480	-72 to -41%	-118 to -78%	0.5–3.0°F (0.3–1.7°C)
RCP 4.5	Emissions reduced sufficiently so that total radiative forcing is stabilized by 2100.	580-720	-38 to 24%	-134 to -21%	2.0-4.7 °F (1.1-2.6 °C)
RCP 6.0	Emissions reduced sufficiently so that total radiative forcing is stabilized by 2100.	720-1,000	18 to 54%	-7% to 72%	2.5–5.6 °F (1.4–3.1 °C)
RCP 8.5	High emissions continue through 2100. Most representative RCP of current emissions track.	>1,000	52 to 95%	74 to 178%	4.7–8.6 °F (2.6–4.8 °C)

IPCC Fourth Assessment Report			IPCC Fifth Assessment Report						
Scen ario Nam e	Description	Global Surface Temp. Change by 2100	Global Mean Sea Level Rise by 2100	Scenari o Name	Description	CO ₂ equiv. ppm by 2100	Global Surface Temp. Change by 2100	Global Mean Sea Level Rise by 2100	
B1	Low emissions.	0.54-1.62 °F (0.3-0.9 °C)	0.59-1.25 ft (0.18-0.38 m)	RCP2.6	Substantial and sustained emissions reductions	475	0.5-3.0 °F (0.3-1.7 °C)	0.85-1.8 ft (0.26- 0.55m)	
A1B	Medium-High emissions.	3.06-7.92 °F (1.7-4.4 °C)	0.69-1.57 ft (0.21-0.48 m)	RCP4.5	Stabilization	630	2.0-4.7 °F (1.1-2.6 °C)	1.0-2.1 ft (0.32- 0.63m)	
A2	Medium-High emissions.	3.6-9.72 °F (2.0-5.4 °C)	0.75-1.67 ft (0.23-0.51 m)	RCP6.0	Stabilization	800	2.5-5.6 °F (1.4-3.1 °C)	1.1-2.1 ft (0.33- 0.63m)	
on institution.	(2.2 3.1 6) (0.25 3.6 1)	RCP8.5	High emissions continue	1313	4.7-8.6 °F (2.6-4.8 °C)	1.5-2.7 ft (0.45- 0.82m)			

Uncertainties in Emission Scenarios

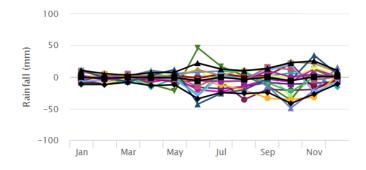
Uncertainties about the future


- Socio-economic development
- Technology
- Energy use
- Policies for GHG mitigation

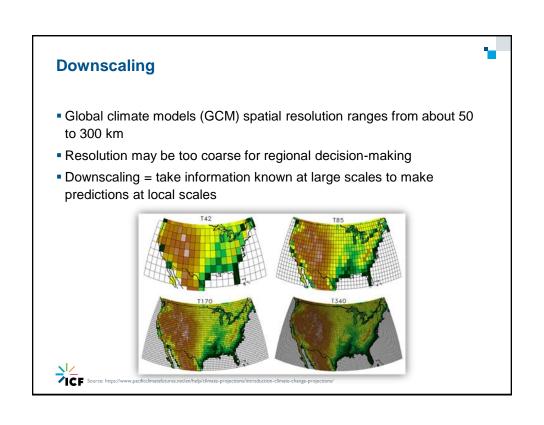
These uncertainties increase as they are projected further out in the future

Climate Models

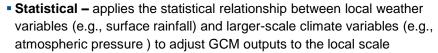
- Mathematical representations of climate system and interacting processes
- Can reproduce key features found in the climate of the past century
- Run emission scenarios and produce projections
- Can be done on different timescales and different geographic areas
- Global climate models referred to as "GCMs"



Model components (UCAR)


Climate Models

- Many models exist
- Different models produce different results
- Model agreement is not necessarily an indication of likelihood



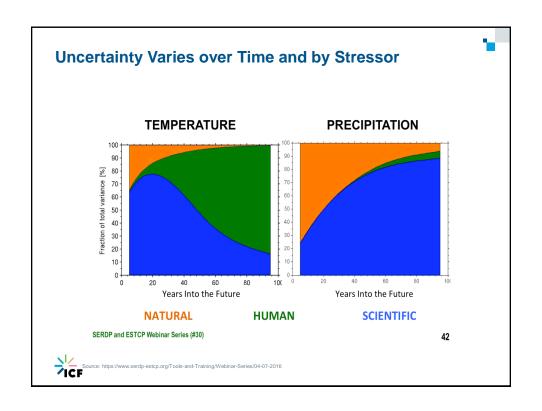
Climate Projections 6.0 Simulation of possible climate change (°C) future in terms of temperature, Model mean global mean temperature change for high 4.0 precipitation, and other climate RCP8.5 variables Global surface temper 2.0 Each projection = combination of model, scenario, and initial condition 0.0 mean temperature change for low emission scenario RCP2.6 -2.0 2100 1900 1950 2000 2050 Year Source: IPCC, 2013 **/**ICF

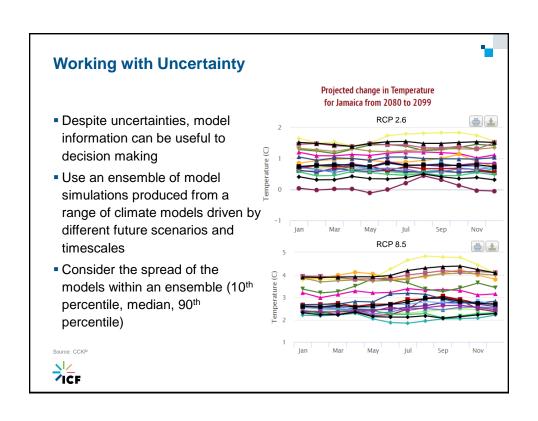
Types of Downscaling

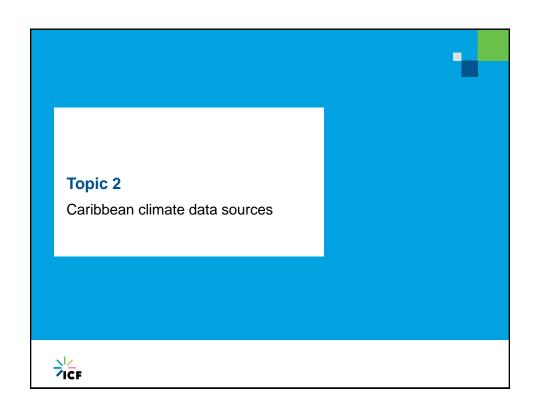
 Dynamical – uses GCM outputs to feed a higher-resolution regional climate model (RCM)

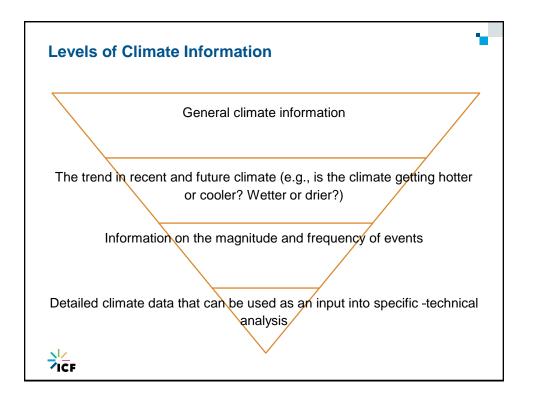
> Dynamically downscaled data available for the Caribbean at 25 km and 50 km resolution

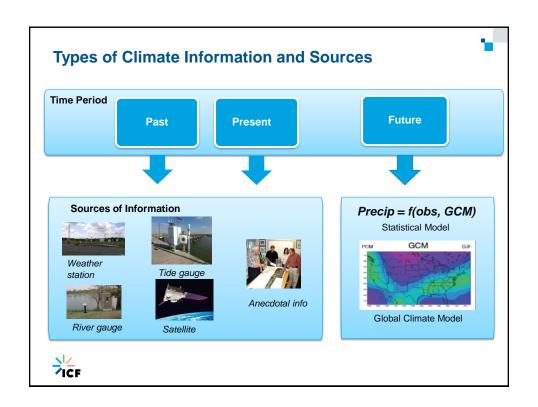
Uncertainties in Models

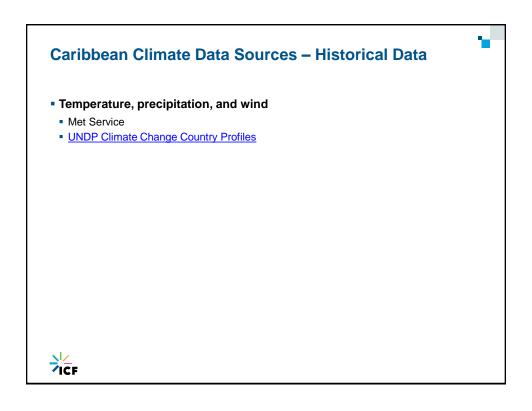

"All models are wrong, but some are useful."


Sources of uncertainty:

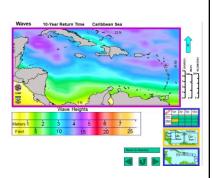

- Natural uncertainty climate variability resulting from natural processes in the climate system
- Human uncertainty Future emissions of greenhouse gases resulting from human activity (this becomes a larger component of uncertainty on time scales of 50 years or more)
- Scientific uncertainty an incomplete understanding of and ability for computer systems to model Earth's complex processes (clouds, particles, ice, natural variability, etc.)







Caribbean Climate Data Sources - Historical Data


- Temperature, precipitation, and wind
 - Met Service
 - UNDP Climate Change Country Profiles
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level

Caribbean Climate Data Sources - Historical Data

- Temperature, precipitation, and wind
 - Met Service
 - UNDP Climate Change Country Profiles
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level
- Hurricanes
 - Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods

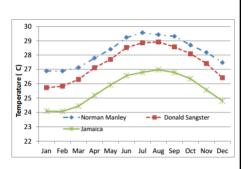
Caribbean Climate Data Sources - Historical Data

а

- Temperature, precipitation, and wind
- Met Service
- UNDP Climate Change Country Profiles
- Sea Level/Tides
 - Met Service
 - Permanent Service for Mean Sea Level
- Hurricanes
 - Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods
 - NOAA National Hurricane Center <u>Historical</u> <u>Hurricane Tracks</u>

https://coast.poaa.gov/hurricanes/?redirect_201.com

Caribbean Climate Data Sources - Historical Data


- Temperature, precipitation, and wind
 - Met Service
 - UNDP Climate Change Country Profiles
- Sea Level/Tides
 - Met Service
- Permanent Service for Mean Sea Level
- Hurricanes
 - Atlas of Probable Storm Effects in the Caribbean Sea (Caribbean Disaster Mitigation Project – Wind, wave and storm surge for the 10-, 25-, 50-, and 100-year return periods
 - NOAA National Hurricane Center <u>Historical</u> <u>Hurricane Tracks</u>
 - Caribbean Hurricane Network

Mary Mary Mary 1 and 1 a

- Temperature, precipitation, and wind
 - National studies (e.g., State of Jamaican Climate Report)

Caribbean Climate Data Sources - Projected Data

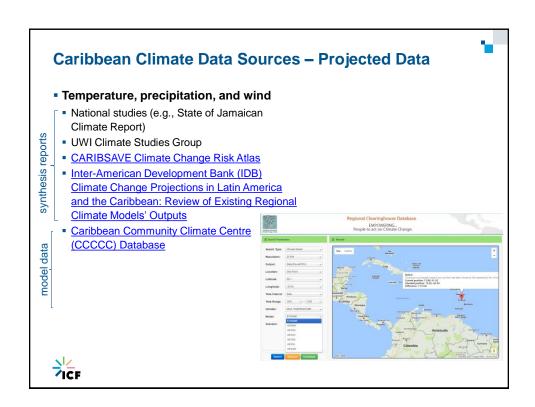
- Temperature, precipitation, and wind
- National studies (e.g., State of Jamaican Climate Report)
- UWI Climate Studies Group

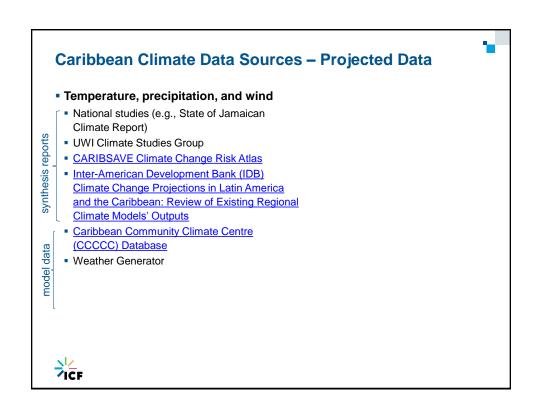
- Temperature, precipitation, and wind
 - National studies (e.g., State of Jamaican Climate Report)
 - UWI Climate Studies Group
 - CARIBSAVE Climate Change Risk Atlas

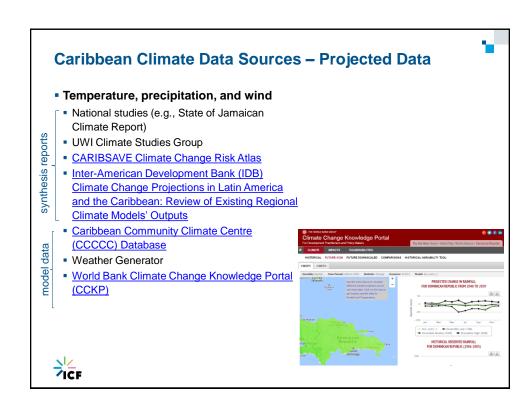
Table 3.3.1: Observed and GCM Projected Changes in Precipitation for Saint Lucia.

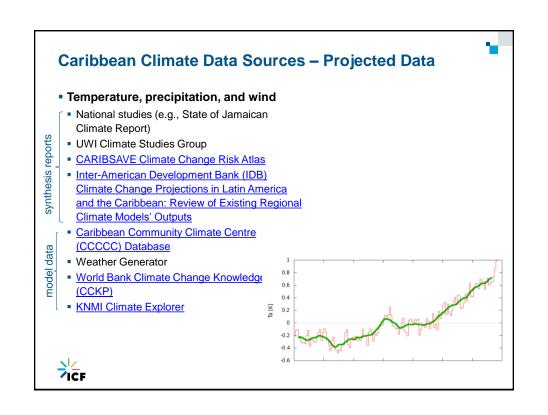
Saint Lucia: Country Scale Changes in Precipitation

	Observed Mean	Trend		Projected changes by the 2020s		Projected changes by the 2050s			Projected changes by the 2080s			
	1970-99	1960 2006		Min	Median	Max	Min	Median	Max	Min	Median	Max
	(mm per month)	(change mm p decad	er	Change	in mm pe	er month	Char	month	per	Cha	nge in mm month	per
			A2	-15	-2	4	-19	-4	4	-37	-16	6
Annual	179.2	0.1	A1B	-10	-2	9	-18	-6	6	-29	-8	5
			B1	-11	-3	13	-18	-2	3	-21	-4	7
			A2	-3	0	11	-8	-1	1	-10	-4	3
DJF	125.6	1.9	A1B	-6	0	4	-8	-1	6	-12	-3	3
			B1	-7	-1	14	-9	-1	7	-8	0	6
			A2	-15	0	8	-20	0	17	-27	-1	9
MAM	105.3	-0.9	A1B	-8	1	8	-20	-1	8	-26	0	8
			B1	-10	0	10	-16	0	2	-17	0	5
			A2	-32	-7	10	-36	-18	12	-72	-27	14
JJA	219.3	-6.7	A1B	-25	-7	6	-34	-19	14	-45	-19	4
			B1	-26	-10	31	-36	-12	5	-40	-15	21
			A2	-29	-4	17	-40	-4	8	-57	-12	8
SON	265.4	5.7	A1B	-30	-2	23	-35	-7	21	-59	-11	15
			B1	-24	-2	12	-39	-1	16	-45	-6	9




Caribbean Climate Data Sources - Projected Data


- Temperature, precipitation, and wind
 - National studies (e.g., State of Jamaican Climate Report)
- UWI Climate Studies Group
- CARIBSAVE Climate Change Risk Atlas
- Inter-American Development Bank (IDB)
 Climate Change Projections in Latin America
 and the Caribbean: Review of Existing Regional
 Climate Models' Outputs



Sea Level/Tides

 NOAA 2017, Technical Report on Global and Regional Sea Level Rise Scenarios for the United States (scenarios)

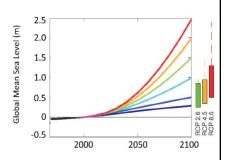
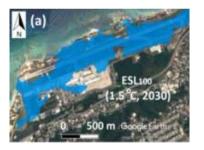
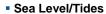


Table 4. Probability of exceeding GMSL (median value) scenarios in 2100 based upon Kopp et al. (2014).


GMSL rise Scenario	RCP2.6	RCP4.5	RCP8.5
Low (0.3 m)	94%	98%	100%
Intermediate-Low (0.5 m)	49%	73%	96%
Intermediate (1.0 m)	2%	3%	17%
Intermediate-High (1.5 m)	0.4%	0.5%	1.3%
High (2.0 m)	0.1%	0.1%	0.3%
Extreme (2.5 m)	0.05%	0.05%	0.1%


Caribbean Climate Data Sources - Projected Data

Sea Level/Tides

- NOAA 2017, Technical Report on Global and Regional Sea Level Rise Scenarios for the United States (scenarios)
- Large scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) (localized spatial modeling)

- NOAA 2017, Technical Report on Global and Regional Sea Level Rise Scenarios for the United States (scenarios)
- Large scale Integrated Sea-level and Coastal Assessment Tool (LISCoAsT) (localized spatial modeling)
- SMASH (from 5Cs)

М

Build relationships and trust with information providers

- Build relationships with partner(s) who are well-equipped to collect and analyze climate data
 - Universities, 5Cs, Met Office, consulting firms
- Work together to identify and overcome data gaps, refine data needs
- As you become familiar with the climate information it becomes more useful, and your needs more apparent. This may involve some capacity building and active partnerships.


Summary: Best practices in identifying information

- Consider how climate has impacted the system in the past, recognizing that it is not a direct parallel
- Account for climate variability, both natural and human-caused, and potential climate extremes.
- Recognize uncertainty in future outcomes and consider a full range of climate scenarios.
- Ask for help from partners and experts if you cannot find or understand the information you need.

Name	URL	Variables	Time	Temporal	Models	Scenario(s)	Spatial
			Period	Resolution			Resolution
Caribbean Community Climate Change Centre (CCCCC) Regional Clearinghouse – RCM	http://clearinghous e_caribbeanclimat e_bz/?db_type=Cli mate%20Model&c ountry=&collection =V501&s=§or =&topic=	Available soil moisture content in root zone, convective rainfall rate, evaporation rate from canopy, large scale rainfall rate, max temperature, minimum temperature, humidity, etc.	1961- 2100	Daily	ECHAM5	A1B	25 km
CCCCC Regional Clearinghouse – GCM	http://clearinghous e.caribbeanclimat e.bz/?db_type=Cli mate%20Model&c ountry=&collection =V501&s=§or =&topic=	Change in annual mean temperature, Change in total precipitation rate (mm/day), Change in mean surface temperature, Change in relative humidity, Change in wind speed at 10 m (m/s)	1990- 2100 (ECHA M), 2010- 2069 (Had)	Daily	ECHAM4, HadAM3P	A2, B2	50 km
CARIBSAVE Climate Change Risk Atlas	http://www.caribbe anclimate.bz/close d-projects/2009- 2011-the- caribsave-climate- change-risk-atlas- ccera.html	Mean temperature, total precipitation, wind speed, relative humidity, sunshine hours, sea surface temperatures, frequency of hot days, frequency of cold days, frequency of cold nights, per centage of rainfall falling in heavy events, maximum 1-day rainfall, maximum 5-day rainfall	2020s, 2050s, 2080s (rel. to 1970- 1999)	Seasonal and Annual	Ensemble of 15 General Circulation Models (GCMs) and PRECIS Regional Climate Model (RCM) driven by ECHAM4 and HadCM3	GCMs: A2, A1B, B1 RCM: A2	GCMs: 2.5 degrees RCM: unknown

